Suppr超能文献

电化学结晶电极中纳米级取向相畴的形成与影响。

Formation and impact of nanoscopic oriented phase domains in electrochemical crystalline electrodes.

机构信息

Department of Materials Science and Engineering, University of Illinois, Urbana, IL, USA.

Materials Research Laboratory, University of Illinois, Urbana, IL, USA.

出版信息

Nat Mater. 2023 Jan;22(1):92-99. doi: 10.1038/s41563-022-01381-4. Epub 2022 Oct 24.

Abstract

Electrochemical phase transformation in ion-insertion crystalline electrodes is accompanied by compositional and structural changes, including the microstructural development of oriented phase domains. Previous studies have identified prevailingly transformation heterogeneities associated with diffusion- or reaction-limited mechanisms. In comparison, transformation-induced domains and their microstructure resulting from the loss of symmetry elements remain unexplored, despite their general importance in alloys and ceramics. Here, we map the formation of oriented phase domains and the development of strain gradient quantitatively during the electrochemical ion-insertion process. A collocated four-dimensional scanning transmission electron microscopy and electron energy loss spectroscopy approach, coupled with data mining, enables the study. Results show that in our model system of cubic spinel MnO nanoparticles their phase transformation upon Mg insertion leads to the formation of domains of similar chemical identity but different orientations at nanometre length scale, following the nucleation, growth and coalescence process. Electrolytes have a substantial impact on the transformation microstructure ('island' versus 'archipelago'). Further, large strain gradients build up from the development of phase domains across their boundaries with high impact on the chemical diffusion coefficient by a factor of ten or more. Our findings thus provide critical insights into the microstructure formation mechanism and its impact on the ion-insertion process, suggesting new rules of transformation structure control for energy storage materials.

摘要

离子嵌入晶态电极中的电化学相转变伴随着组成和结构的变化,包括各向异性相畴的微结构发展。先前的研究已经确定了与扩散或反应限制机制相关的主要转变非均质性。相比之下,尽管它们在合金和陶瓷中普遍重要,但由对称元素丧失引起的相变诱导畴及其微观结构仍然未被探索。在这里,我们在电化学离子嵌入过程中定量地绘制出了取向相畴的形成和应变梯度的发展。通过共定位的四维扫描透射电子显微镜和电子能量损失光谱方法,结合数据挖掘,实现了这一研究。结果表明,在我们的立方尖晶石 MnO 纳米粒子模型体系中,其在 Mg 嵌入时的相转变导致了纳米级长度尺度上具有相似化学特性但不同取向的畴的形成,遵循成核、生长和聚结过程。电解质对转变微观结构有很大影响(“岛”与“群岛”)。此外,相畴的发展会在其边界处产生大的应变梯度,从而对化学扩散系数产生高达十倍或更多的影响。因此,我们的发现为微观结构形成机制及其对离子嵌入过程的影响提供了重要的见解,为储能材料的相变结构控制提供了新的规则。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验