Suppr超能文献

基于第三腰椎水平 CT,骨骼肌指数和腰大肌指数可预测骨质疏松症。

Based on CT at the third lumbar spine level, the skeletal muscle index and psoas muscle index can predict osteoporosis.

机构信息

Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University, Wenzhou, 325000, China.

Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China.

出版信息

BMC Musculoskelet Disord. 2022 Oct 24;23(1):933. doi: 10.1186/s12891-022-05887-5.

Abstract

BACKGROUND

With the increasing number of studies on osteoporosis and muscle adipose tissue, existing studies have shown that skeletal muscle tissue and adipose tissue are closely related to osteoporosis by dual-energy x-ray absorptiometry (DXA) measurement. However, few studies have explored whether the skeletal muscle and adipose tissue index measured at the lumbar spine 3 (L3) level are closely related to bone mineral density (BMD) and can even predict osteoporosis. Therefore, this study aimed to prove whether skeletal muscle and adipose tissue index measured by computed tomography (CT) images based on a single layer are closely related to BMD.

METHODS

A total of 180 participants were enrolled in this study to obtain skeletal muscle index (SMI), psoas muscle index (PMI), subcutaneous fat index (SFI), visceral fat index (VFI), and the visceral-to-subcutaneous ratio of the fat area (VSR) at L3 levels and divide them into osteoporotic and normal groups based on the T-score of DXA. Spearman rank correlation was used to analyze the correlation between SMI, PMI, SFI, VFI, VSR, and BMD. Similarly, spearman rank correlation was also used to analyze the correlation between SMI, PMI, SFI, VFI, VSR, and the fracture risk assessment tool (FRAX). Receiver operating characteristic (ROC) was used to analyze the efficacy of SMI, PMI, SFI, VFI, and VSR in predicting osteoporosis.

RESULTS

BMD of L1-4 was closely correlated with SMI, PMI, VFI and VSR (r = 0.199 p = 0.008, r = 0.422 p < 0.001, r = 0.253 p = 0.001, r = 0.310 p < 0.001). BMD of the femoral neck was only correlated with PMI and SFI (r = 0.268 p < 0.001, r = - 0.164 p-0.028). FRAX (major osteoporotic fracture) was only closely related to PMI (r = - 0.397 p < 0.001). FRAX (hip fracture) was closely related to SMI and PMI (r = - 0.183 p = 0.014, r = - 0.353 p < 0.001). Besides, FRAX (major osteoporotic fracture and hip fracture) did not correlate with VFI, SFI, and VSR. SMI and PMI were statistically significant, with the area under the curve (AUC) of 0.400 (95% confidence interval 0.312-0.488 p = 0.024) and 0.327 (95% confidence interval 0.244-0.410 p < 0.001), respectively. VFI, SFI, and VSR were not statistically significant in predicting osteoporosis.

CONCLUSIONS

This study demonstrated that L3-based muscle index could assist clinicians in the diagnosis of osteoporosis to a certain extent, and PMI is superior to SMI in the diagnosis of osteoporosis. In addition, VFI, SFI, and VSR do not help clinicians to diagnose osteoporosis well.

摘要

背景

随着骨质疏松症和肌肉脂肪组织研究的增加,现有研究表明,通过双能 X 射线吸收法(DXA)测量,骨骼肌肉组织和脂肪组织与骨质疏松症密切相关。然而,很少有研究探讨腰椎 3(L3)水平测量的骨骼肌和脂肪组织指数是否与骨密度(BMD)密切相关,甚至能否预测骨质疏松症。因此,本研究旨在证明基于单层的计算机断层扫描(CT)图像测量的骨骼肌和脂肪组织指数是否与 BMD 密切相关。

方法

本研究共纳入 180 名参与者,以获得 L3 水平的骨骼肌指数(SMI)、腰大肌指数(PMI)、皮下脂肪指数(SFI)、内脏脂肪指数(VFI)和脂肪面积的内脏与皮下比值(VSR),并根据 DXA 的 T 评分将其分为骨质疏松症和正常组。Spearman 秩相关用于分析 SMI、PMI、SFI、VFI、VSR 与 BMD 之间的相关性。同样,Spearman 秩相关也用于分析 SMI、PMI、SFI、VFI、VSR 与骨折风险评估工具(FRAX)之间的相关性。接收者操作特征(ROC)用于分析 SMI、PMI、SFI、VFI 和 VSR 预测骨质疏松症的疗效。

结果

L1-4 的 BMD 与 SMI、PMI、VFI 和 VSR 密切相关(r=0.199,p=0.008,r=0.422,p<0.001,r=0.253,p=0.001,r=0.310,p<0.001)。股骨颈的 BMD 仅与 PMI 和 SFI 相关(r=0.268,p<0.001,r=-0.164,p-0.028)。FRAX(主要骨质疏松性骨折)仅与 PMI 密切相关(r=-0.397,p<0.001)。FRAX(髋部骨折)与 SMI 和 PMI 密切相关(r=-0.183,p=0.014,r=-0.353,p<0.001)。此外,FRAX(主要骨质疏松性骨折和髋部骨折)与 VFI、SFI 和 VSR 不相关。SMI 和 PMI 具有统计学意义,曲线下面积(AUC)分别为 0.400(95%置信区间 0.312-0.488,p=0.024)和 0.327(95%置信区间 0.244-0.410,p<0.001)。VFI、SFI 和 VSR 在预测骨质疏松症方面没有统计学意义。

结论

本研究表明,基于 L3 的肌肉指数在一定程度上可以帮助临床医生诊断骨质疏松症,而 PMI 在诊断骨质疏松症方面优于 SMI。此外,VFI、SFI 和 VSR 并不能帮助临床医生很好地诊断骨质疏松症。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e856/9590212/719656c921bd/12891_2022_5887_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验