Gallego-Díaz Estefanía, Cristancho-Rojas César N, Criales-Vera Sergio A
Programa de Imagenología Diagnóstica y Terapéutica, Departamento de Radiología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México.
Grupo CT Scanner, Universidad Nacional Autónoma de México, Ciudad de México, México.
Arch Cardiol Mex. 2022 Oct 25;93(Supl 6):94-101. doi: 10.24875/ACM.220001481.
: To establish the diagnostic accuracy of the computed tomography (CT) comparing the probability of COVID-19 pneumopathy, obtained through artificial intelligence (AI) system designed by Siemens Healthineers, and the qualitative evaluation CO-RADS (COVID-19 Reporting and Data System) with the reference standard (RT-PCR), and thus providing the experience of our institution.
: An observational, comparative and retrolective study was performed on 280 adult patients with suspected SARS-CoV2 infection, 192 of whom had PCR testing. Diagnostic accuracy information was obtained after comparing the reference standard (RT-PCR) with the CO-RADS performed by observers and the probability of COVID-19 yielded by CT images through AI software.
: The comparison of COVID-19 probability acquired by AI vs. SARS CoV-2 RT-PCR generated an AUC ROC 0.774 (CI 0.69-0.81) with p = 0.0001. The COVID-19 probability had an acceptable accuracy, with a good PPV 87.80%, but with a poor NPV of 58.80%. The CO-RADS vs. RCP variable got a higher accuracy with much higher sensitivity and specificity values, reaching 91.80% and 88.7% respectively.
: The comparison between the results obtained by the AI and those referring to the CO-RADS variable showed greater effectiveness in the latter for patients with suspected COVID-19 however, it was possible to document the high impact of the automatic quantification system in the evaluation of these patients since it allows speeding up the radiologist’s assessment and works as a complement in cases of diagnostic doubts.
通过西门子医疗公司设计的人工智能(AI)系统,比较新冠病毒肺炎的患病概率,以及采用定性评估的新冠病毒报告和数据系统(CO-RADS)与参考标准(逆转录聚合酶链反应,RT-PCR),以确定计算机断层扫描(CT)的诊断准确性,从而分享我们机构的经验。
对280例疑似感染严重急性呼吸综合征冠状病毒2(SARS-CoV2)的成年患者进行了一项观察性、对比性和回顾性研究,其中192例患者进行了PCR检测。将参考标准(RT-PCR)与观察者进行的CO-RADS以及通过AI软件从CT图像得出的新冠病毒肺炎患病概率进行比较后,获得诊断准确性信息。
AI得出的新冠病毒肺炎患病概率与SARS-CoV2 RT-PCR的比较产生了一个曲线下面积(AUC)为0.774(95%置信区间为0.69 - 0.81),p = 0.0001。新冠病毒肺炎患病概率具有可接受的准确性,阳性预测值(PPV)良好,为87.80%,但阴性预测值(NPV)较差,为58.80%。CO-RADS与RT-PCR变量相比,准确性更高,敏感性和特异性值更高,分别达到91.80%和88.7%。
对于疑似新冠病毒肺炎患者而言,AI得出的结果与CO-RADS变量得出的结果相比,后者显示出更高的有效性。然而,可以证明自动定量系统在评估这些患者时具有很大影响,因为它可以加快放射科医生的评估速度,并在诊断存疑的情况下起到补充作用。