Suppr超能文献

采用收缩-扩张阵列微通道的离心式平台对循环肿瘤细胞进行惯性分离的数值研究。

Numerical Study of a Centrifugal Platform for the Inertial Separation of Circulating Tumor Cells Using Contraction-Expansion Array Microchannels.

机构信息

Faculty of New Sciences and Technologies, University of Tehran, Tehran, 14395 -1561, Iran.

Micro/Nanofabrication Technologies Lab, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 14395 -1561, Iran.

出版信息

Arch Razi Inst. 2022 Apr 30;77(2):647-660. doi: 10.22092/ARI.2022.357477.2046. eCollection 2022 Apr.

Abstract

Label-free inertial separation of the circulating tumor cells (CTCs) has attracted significant attention recently. The present study proposed a centrifugal platform for the inertial separation of the CTCs from the white blood cells. Particle trajectories of the contraction-expansion array (CEA) microchannels were analyzed by the finite element method. Four expansion geometries (i.e., circular, rectangular, trapezoidal, and triangular) were compared to explore their differences in separation possibilities. Different operational and geometrical parameters were investigated to achieve maximum separation efficiency. Results indicated that the trapezoidal CEA microchannel with ten expansions and a 100 µm channel depth had the best separation performance at an angular velocity of 100 rad/s. Reynolds number of 47 was set as the optimum value to apply minimum shear stress on the CTCs leading to 100% efficiency and 95% purity. Furthermore, the proposed system was simulated for whole blood by considering the red blood cells.

摘要

无标记惯性分离循环肿瘤细胞(CTC)最近引起了广泛关注。本研究提出了一种离心平台,用于从白细胞中惯性分离 CTC。通过有限元法分析收缩-扩张阵列(CEA)微通道中的颗粒轨迹。比较了四种扩张几何形状(即圆形、矩形、梯形和三角形),以探索它们在分离可能性方面的差异。研究了不同的操作和几何参数,以实现最大的分离效率。结果表明,在角速度为 100rad/s 时,具有十个扩张和 100μm 通道深度的梯形 CEA 微通道具有最佳的分离性能。雷诺数设定为 47,以应用最小剪切应力于 CTC,从而实现 100%的效率和 95%的纯度。此外,通过考虑红细胞对全血进行了模拟。

相似文献

1
Numerical Study of a Centrifugal Platform for the Inertial Separation of Circulating Tumor Cells Using Contraction-Expansion Array Microchannels.
Arch Razi Inst. 2022 Apr 30;77(2):647-660. doi: 10.22092/ARI.2022.357477.2046. eCollection 2022 Apr.
2
A curved expansion-contraction microfluidic structure for inertial based separation of circulating tumor cells from blood samples.
J Chromatogr A. 2023 Aug 30;1705:464200. doi: 10.1016/j.chroma.2023.464200. Epub 2023 Jul 5.
5
Influence factors of channel geometry for separation of circulating tumor cells by four-ring inertial focusing microchannel.
Cell Biochem Funct. 2023 Apr;41(3):375-388. doi: 10.1002/cbf.3791. Epub 2023 Mar 23.
7
Numerical study of dielectrophoresis-modified inertial migration for overlapping sized cell separation.
Electrophoresis. 2022 Apr;43(7-8):879-891. doi: 10.1002/elps.202100187. Epub 2022 Jan 22.
8
9
Continuous CTC separation through a DEP-based contraction-expansion inertial microfluidic channel.
Biotechnol Prog. 2023 Jul-Aug;39(4):e3341. doi: 10.1002/btpr.3341. Epub 2023 Mar 27.

本文引用的文献

1
Circulating tumor cell clusters: Insights into tumour dissemination and metastasis.
Expert Rev Mol Diagn. 2020 Nov;20(11):1139-1147. doi: 10.1080/14737159.2020.1846523. Epub 2020 Nov 26.
2
Application of level-set method in simulation of normal and cancer cells deformability within a microfluidic device.
J Biomech. 2020 Nov 9;112:110066. doi: 10.1016/j.jbiomech.2020.110066. Epub 2020 Sep 28.
3
4
A Review on Microdevices for Isolating Circulating Tumor Cells.
Micromachines (Basel). 2020 May 22;11(5):531. doi: 10.3390/mi11050531.
5
Mathematical modeling and computational analysis of centrifugal microfluidic platforms: a review.
Lab Chip. 2020 Apr 21;20(8):1318-1357. doi: 10.1039/c9lc00775j. Epub 2020 Apr 3.
7
Inertial Focusing and Separation of Particles in Similar Curved Channels.
Sci Rep. 2019 Nov 12;9(1):16575. doi: 10.1038/s41598-019-52983-z.
8
Isolation of circulating tumor cells in non-small-cell-lung-cancer patients using a multi-flow microfluidic channel.
Microsyst Nanoeng. 2019 Feb 25;5:8. doi: 10.1038/s41378-019-0045-6. eCollection 2019.
10
Size-based separation methods of circulating tumor cells.
Adv Drug Deliv Rev. 2018 Feb 1;125:3-20. doi: 10.1016/j.addr.2018.01.002. Epub 2018 Jan 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验