Suppr超能文献

IntEnzyDB:一个整合结构动力学酶学数据库。

IntEnzyDB: an Integrated Structure-Kinetics Enzymology Database.

机构信息

Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States.

Department of Biostatistics, Vanderbilt University, Nashville, Tennessee 37205, United States.

出版信息

J Chem Inf Model. 2022 Nov 28;62(22):5841-5848. doi: 10.1021/acs.jcim.2c01139. Epub 2022 Oct 26.

Abstract

Data-driven modeling has emerged as a new paradigm for biocatalyst design and discovery. Biocatalytic databases that integrate enzyme structure and function data are in urgent need. Here we describe IntEnzyDB as an integrated structure-kinetics database for facile statistical modeling and machine learning. IntEnzyDB employs a relational database architecture with a flattened data structure, which allows rapid data operation. This architecture also makes it easy for IntEnzyDB to incorporate more types of enzyme function data. IntEnzyDB contains enzyme kinetics and structure data from six enzyme commission classes. Using 1050 enzyme structure-kinetics pairs, we investigated the efficiency-perturbing propensities of mutations that are close or distal to the active site. The statistical results show that efficiency-enhancing mutations are globally encoded and that deleterious mutations are much more likely to occur in close mutations than in distal mutations. Finally, we describe a web interface that allows public users to access enzymology data stored in IntEnzyDB. IntEnzyDB will provide a computational facility for data-driven modeling in biocatalysis and molecular evolution.

摘要

数据驱动的建模方法已经成为生物催化剂设计和发现的新范例。急需整合酶结构和功能数据的生物催化数据库。在这里,我们将描述 IntEnzyDB 作为一个用于简化统计建模和机器学习的综合结构动力学数据库。IntEnzyDB 采用关系数据库架构和扁平化数据结构,允许快速进行数据操作。这种架构还使 IntEnzyDB 很容易整合更多类型的酶功能数据。IntEnzyDB 包含来自六个酶委员会类别的酶动力学和结构数据。使用 1050 个酶结构-动力学对,我们研究了靠近或远离活性位点的突变对效率的干扰倾向。统计结果表明,效率增强的突变是全局编码的,并且有害突变更可能发生在近距离突变中,而不是在远距离突变中。最后,我们描述了一个 Web 界面,允许公共用户访问存储在 IntEnzyDB 中的酶学数据。IntEnzyDB 将为生物催化和分子进化中的数据驱动建模提供计算工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab26/10335264/74e17abce7ad/nihms-1909997-f0002.jpg

相似文献

1
IntEnzyDB: an Integrated Structure-Kinetics Enzymology Database.IntEnzyDB:一个整合结构动力学酶学数据库。
J Chem Inf Model. 2022 Nov 28;62(22):5841-5848. doi: 10.1021/acs.jcim.2c01139. Epub 2022 Oct 26.
2
Rate-Perturbing Single Amino Acid Mutation for Hydrolases: A Statistical Profiling.酶的变构单氨基酸突变:统计分析。
J Phys Chem B. 2021 Sep 30;125(38):10682-10691. doi: 10.1021/acs.jpcb.1c05901. Epub 2021 Sep 15.
6
Metal-MACiE: a database of metals involved in biological catalysis.金属-MACiE:一个涉及生物催化的金属数据库。
Bioinformatics. 2009 Aug 15;25(16):2088-9. doi: 10.1093/bioinformatics/btp256. Epub 2009 Apr 15.

引用本文的文献

2
Physics-based modeling in the new era of enzyme engineering.酶工程新时代基于物理学的建模
Nat Comput Sci. 2025 Apr;5(4):279-291. doi: 10.1038/s43588-025-00788-8. Epub 2025 Apr 24.
5
Mutexa: A Computational Ecosystem for Intelligent Protein Engineering.Mutexa:智能蛋白质工程的计算生态系统。
J Chem Theory Comput. 2023 Nov 14;19(21):7459-7477. doi: 10.1021/acs.jctc.3c00602. Epub 2023 Oct 12.

本文引用的文献

1
EnzyHTP: A High-Throughput Computational Platform for Enzyme Modeling.EnzyHTP:用于酶建模的高通量计算平台。
J Chem Inf Model. 2022 Feb 14;62(3):647-655. doi: 10.1021/acs.jcim.1c01424. Epub 2022 Jan 24.
3
The reactome pathway knowledgebase 2022.反应体通路知识库2022版。
Nucleic Acids Res. 2022 Jan 7;50(D1):D687-D692. doi: 10.1093/nar/gkab1028.
4
Rate-Perturbing Single Amino Acid Mutation for Hydrolases: A Statistical Profiling.酶的变构单氨基酸突变:统计分析。
J Phys Chem B. 2021 Sep 30;125(38):10682-10691. doi: 10.1021/acs.jpcb.1c05901. Epub 2021 Sep 15.
6
Highly accurate protein structure prediction with AlphaFold.利用 AlphaFold 进行高精度蛋白质结构预测。
Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15.
7
Protein sequence design with deep generative models.利用深度生成模型进行蛋白质序列设计。
Curr Opin Chem Biol. 2021 Dec;65:18-27. doi: 10.1016/j.cbpa.2021.04.004. Epub 2021 May 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验