Suppr超能文献

基于数据的酶工程改造以鉴定功能增强型酶。

Data-driven enzyme engineering to identify function-enhancing enzymes.

机构信息

Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA.

Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA.

出版信息

Protein Eng Des Sel. 2023 Jan 21;36. doi: 10.1093/protein/gzac009.

Abstract

Identifying function-enhancing enzyme variants is a 'holy grail' challenge in protein science because it will allow researchers to expand the biocatalytic toolbox for late-stage functionalization of drug-like molecules, environmental degradation of plastics and other pollutants, and medical treatment of food allergies. Data-driven strategies, including statistical modeling, machine learning, and deep learning, have largely advanced the understanding of the sequence-structure-function relationships for enzymes. They have also enhanced the capability of predicting and designing new enzymes and enzyme variants for catalyzing the transformation of new-to-nature reactions. Here, we reviewed the recent progresses of data-driven models that were applied in identifying efficiency-enhancing mutants for catalytic reactions. We also discussed existing challenges and obstacles faced by the community. Although the review is by no means comprehensive, we hope that the discussion can inform the readers about the state-of-the-art in data-driven enzyme engineering, inspiring more joint experimental-computational efforts to develop and apply data-driven modeling to innovate biocatalysts for synthetic and pharmaceutical applications.

摘要

鉴定具有增强功能的酶变体是蛋白质科学的“圣杯”挑战,因为它将使研究人员能够扩展生物催化工具包,用于药物样分子的后期功能化、塑料和其他污染物的环境降解,以及食物过敏的医疗治疗。数据驱动的策略,包括统计建模、机器学习和深度学习,在很大程度上促进了对酶的序列-结构-功能关系的理解。它们还提高了预测和设计新酶和酶变体的能力,以催化新的自然反应的转化。在这里,我们回顾了应用于鉴定催化反应增效突变体的数据驱动模型的最新进展。我们还讨论了该领域面临的现有挑战和障碍。虽然这篇综述并不全面,但我们希望讨论能让读者了解数据驱动的酶工程的最新技术,激发更多的实验计算联合努力,开发和应用数据驱动的建模来创新用于合成和制药应用的生物催化剂。

相似文献

3
Getting Momentum: From Biocatalysis to Advanced Synthetic Biology.获得动力:从生物催化到先进的合成生物学。
Trends Biochem Sci. 2018 Mar;43(3):180-198. doi: 10.1016/j.tibs.2018.01.003. Epub 2018 Feb 6.
8
Computational enzyme design: transitioning from catalytic proteins to enzymes.计算酶设计:从催化蛋白到酶的转变
Curr Opin Struct Biol. 2014 Aug;27:87-94. doi: 10.1016/j.sbi.2014.05.010. Epub 2014 Jul 5.
10
Directed Evolution of Protein Catalysts.蛋白质催化剂的定向进化。
Annu Rev Biochem. 2018 Jun 20;87:131-157. doi: 10.1146/annurev-biochem-062917-012034. Epub 2018 Mar 1.

引用本文的文献

6
Mutexa: A Computational Ecosystem for Intelligent Protein Engineering.Mutexa:智能蛋白质工程的计算生态系统。
J Chem Theory Comput. 2023 Nov 14;19(21):7459-7477. doi: 10.1021/acs.jctc.3c00602. Epub 2023 Oct 12.
7
EnzyHTP Computational Directed Evolution with Adaptive Resource Allocation.EnzyHTP 计算导向进化与自适应资源分配。
J Chem Inf Model. 2023 Sep 11;63(17):5650-5659. doi: 10.1021/acs.jcim.3c00618. Epub 2023 Aug 23.

本文引用的文献

1
IntEnzyDB: an Integrated Structure-Kinetics Enzymology Database.IntEnzyDB:一个整合结构动力学酶学数据库。
J Chem Inf Model. 2022 Nov 28;62(22):5841-5848. doi: 10.1021/acs.jcim.2c01139. Epub 2022 Oct 26.
2
Machine learning modeling of family wide enzyme-substrate specificity screens.基于机器学习的全家族酶底物特异性筛选模型。
PLoS Comput Biol. 2022 Feb 10;18(2):e1009853. doi: 10.1371/journal.pcbi.1009853. eCollection 2022 Feb.
4
EnzyHTP: A High-Throughput Computational Platform for Enzyme Modeling.EnzyHTP:用于酶建模的高通量计算平台。
J Chem Inf Model. 2022 Feb 14;62(3):647-655. doi: 10.1021/acs.jcim.1c01424. Epub 2022 Jan 24.
5
8
Rate-Perturbing Single Amino Acid Mutation for Hydrolases: A Statistical Profiling.酶的变构单氨基酸突变:统计分析。
J Phys Chem B. 2021 Sep 30;125(38):10682-10691. doi: 10.1021/acs.jpcb.1c05901. Epub 2021 Sep 15.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验