Cordero-Grande Lucilio, Ortuno-Fisac Juan Enrique, Del Hoyo Alejandra Aguado, Uus Alena, Deprez Maria, Santos Andres, Hajnal Joseph V, Ledesma-Carbayo Maria J
IEEE Trans Med Imaging. 2023 Mar;42(3):810-822. doi: 10.1109/TMI.2022.3217725. Epub 2023 Mar 2.
Magnetic resonance imaging of whole fetal body and placenta is limited by different sources of motion affecting the womb. Usual scanning techniques employ single-shot multi-slice sequences where anatomical information in different slices may be subject to different deformations, contrast variations or artifacts. Volumetric reconstruction formulations have been proposed to correct for these factors, but they must accommodate a non-homogeneous and non-isotropic sampling, so regularization becomes necessary. Thus, in this paper we propose a deep generative prior for robust volumetric reconstructions integrated with a diffeomorphic volume to slice registration method. Experiments are performed to validate our contributions and compare with ifdefined tmiformat R2.5a state of the art method methods in the literature in a cohort of 72 fetal datasets in the range of 20-36 weeks gestational age. Results suggest improved image resolution Quantitative as well as radiological assessment suggest improved image quality and more accurate prediction of gestational age at scan is obtained when comparing to a state of the art reconstruction method methods. In addition, gestational age prediction results from our volumetric reconstructions compare favourably are competitive with existing brain-based approaches, with boosted accuracy when integrating information of organs other than the brain. Namely, a mean absolute error of 0.618 weeks ( R=0.958 ) is achieved when combining fetal brain and trunk information.
整个胎儿身体和胎盘的磁共振成像受到影响子宫的不同运动源的限制。常用的扫描技术采用单次激发多层序列,其中不同层面的解剖信息可能会受到不同的变形、对比度变化或伪影的影响。已经提出了体积重建公式来校正这些因素,但它们必须适应非均匀和非各向同性的采样,因此正则化变得必要。因此,在本文中,我们提出了一种用于稳健体积重建的深度生成先验,并结合了一种微分同胚体积到切片配准方法。我们进行了实验以验证我们的贡献,并在一组72个孕龄在20 - 36周的胎儿数据集中与文献中定义的R2.5a最新方法进行比较。结果表明图像分辨率有所提高。定量以及放射学评估表明,与最新的重建方法相比,图像质量得到改善,并且在扫描时获得了更准确的孕周预测。此外,我们的体积重建的孕周预测结果与现有的基于大脑的方法相比具有优势,在整合大脑以外器官的信息时准确性得到提高。即,当结合胎儿大脑和躯干信息时,平均绝对误差为0.618周(R = 0.958)。