Suppr超能文献

直流刺激调节分离星形胶质细胞中的基因表达,影响神经胶质细胞介导的可塑性。

Direct current stimulation modulates gene expression in isolated astrocytes with implications for glia-mediated plasticity.

机构信息

Department of Biomedical Engineering, The City College of New York, Steinman Hall, Room 404C, 160 Convent Ave, New York, NY, 10031, USA.

出版信息

Sci Rep. 2022 Oct 26;12(1):17964. doi: 10.1038/s41598-022-22394-8.

Abstract

While the applications of transcranial direct current stimulation (tDCS) across brain disease and cognition are diverse, they rely on changes in brain function outlasting stimulation. The cellular mechanisms of DCS leading to brain plasticity have been studied, but the role of astrocytes remains unaddressed. We previously predicted that during tDCS current is concentrated across the blood brain-barrier. This will amplify exposure of endothelial cells (ECs) that form blood vessels and of astrocytes that wrap around them. The objective of this study was to investigate the effect of tDCS on the gene expression by astrocytes or ECs. DCS (0.1 or 1 mA, 10 min) was applied to monolayers of mouse brain ECs or human astrocytes. Gene expression of a set of neuroactive genes were measured using RT-qPCR. Expression was assessed immediately or 1 h after DCS. Because we previously showed that DCS can produce electroosmotic flow and fluid shear stress known to influence EC and astrocyte function, we compared three interventions: pressure-driven flow across the monolayer alone, pressure-driven flow plus DCS, and DCS alone with flow blocked. We show that DCS can directly modulate gene expression in astrocytes (notably FOS and BDNF), independent of but synergistic with pressure-driven flow gene expression. In ECs, pressure-driven flow activates genes expression with no evidence of further contribution from DCS. In ECs, DCS alone produced mixed effects including an upregulation of FGF9 and downregulation of NTF3. We propose a new adjunct mechanism for tDCS based on glial meditated plasticity.

摘要

虽然经颅直流电刺激(tDCS)在脑疾病和认知方面的应用多种多样,但它们依赖于刺激后大脑功能的持久变化。已经研究了导致脑可塑性的直流电刺激的细胞机制,但星形胶质细胞的作用仍未得到解决。我们之前预测,在 tDCS 期间,电流集中在血脑屏障上。这将放大暴露于形成血管的内皮细胞(EC)和围绕它们的星形胶质细胞。本研究的目的是研究 tDCS 对星形胶质细胞或 EC 基因表达的影响。应用 0.1 或 1 mA、10 分钟的 tDCS 于单层培养的小鼠脑 EC 或人星形胶质细胞。使用 RT-qPCR 测量一组神经活性基因的基因表达。在 tDCS 后立即或 1 小时评估表达。因为我们之前表明 tDCS 可以产生已知会影响 EC 和星形胶质细胞功能的电渗流和流体剪切应力,所以我们比较了三种干预措施:单独跨单层的压力驱动流、压力驱动流加 tDCS 以及阻断流动的单独 tDCS。我们表明,tDCS 可以独立于但与压力驱动流协同作用,直接调节星形胶质细胞中的基因表达(特别是 FOS 和 BDNF)。在 EC 中,压力驱动流激活基因表达,而没有证据表明 tDCS 有进一步的贡献。在 EC 中,单独的 tDCS 产生了混合效应,包括 FGF9 的上调和 NTF3 的下调。我们提出了一种基于神经胶质介导可塑性的新的 tDCS 辅助机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b19a/9606293/6c163f48294a/41598_2022_22394_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验