Suppr超能文献

早衰症与基于衰老组学的比较分析。

Progeria and Aging-Omics Based Comparative Analysis.

作者信息

Caliskan Aylin, Crouch Samantha A W, Giddins Sara, Dandekar Thomas, Dangwal Seema

机构信息

Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany.

Stanford Cardiovascular Institute, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.

出版信息

Biomedicines. 2022 Sep 29;10(10):2440. doi: 10.3390/biomedicines10102440.

Abstract

Since ancient times aging has also been regarded as a disease, and humankind has always strived to extend the natural lifespan. Analyzing the genes involved in aging and disease allows for finding important indicators and biological markers for pathologies and possible therapeutic targets. An example of the use of omics technologies is the research regarding aging and the rare and fatal premature aging syndrome progeria (Hutchinson-Gilford progeria syndrome, HGPS). In our study, we focused on the in silico analysis of differentially expressed genes (DEGs) in progeria and aging, using a publicly available RNA-Seq dataset (GEO dataset GSE113957) and a variety of bioinformatics tools. Despite the GSE113957 RNA-Seq dataset being well-known and frequently analyzed, the RNA-Seq data shared by Fleischer et al. is far from exhausted and reusing and repurposing the data still reveals new insights. By analyzing the literature citing the use of the dataset and subsequently conducting a comparative analysis comparing the RNA-Seq data analyses of different subsets of the dataset (healthy children, nonagenarians and progeria patients), we identified several genes involved in both natural aging and progeria (KRT8, KRT18, ACKR4, CCL2, UCP2, ADAMTS15, ACTN4P1, WNT16, IGFBP2). Further analyzing these genes and the pathways involved indicated their possible roles in aging, suggesting the need for further in vitro and in vivo research. In this paper, we (1) compare "normal aging" (nonagenarians vs. healthy children) and progeria (HGPS patients vs. healthy children), (2) enlist genes possibly involved in both the natural aging process and progeria, including the first mention of IGFBP2 in progeria, (3) predict miRNAs and interactomes for WNT16 (hsa-mir-181a-5p), UCP2 (hsa-mir-26a-5p and hsa-mir-124-3p), and IGFBP2 (hsa-mir-124-3p, hsa-mir-126-3p, and hsa-mir-27b-3p), (4) demonstrate the compatibility of well-established R packages for RNA-Seq analysis for researchers interested but not yet familiar with this kind of analysis, and (5) present comparative proteomics analyses to show an association between our RNA-Seq data analyses and corresponding changes in protein expression.

摘要

自古以来,衰老就被视为一种疾病,人类一直致力于延长自然寿命。分析与衰老和疾病相关的基因有助于找到病理学的重要指标和生物标志物以及可能的治疗靶点。组学技术应用的一个例子是关于衰老以及罕见致命的早衰综合征(哈钦森 - 吉尔福德早衰综合征,HGPS)的研究。在我们的研究中,我们使用公开可用的RNA测序数据集(GEO数据集GSE113957)和各种生物信息学工具,专注于对早衰和衰老中差异表达基因(DEG)的计算机分析。尽管GSE113957 RNA测序数据集广为人知且经常被分析,但弗莱舍等人共享的RNA测序数据远未被穷尽,对这些数据的再利用和重新分析仍能揭示新的见解。通过分析引用该数据集使用情况的文献,并随后对该数据集不同子集(健康儿童、九旬老人和早衰患者)的RNA测序数据分析进行比较分析,我们确定了几个与自然衰老和早衰都相关的基因(角蛋白8、角蛋白18、趋化因子受体4、趋化因子配体2、解偶联蛋白2、含血小板反应蛋白基序的金属蛋白酶15、辅肌动蛋白4假基因1、WNT16、胰岛素样生长因子结合蛋白2)。对这些基因及其涉及的通路进行进一步分析表明了它们在衰老中的可能作用,这表明需要进一步的体外和体内研究。在本文中,我们(1)比较“正常衰老”(九旬老人与健康儿童)和早衰(HGPS患者与健康儿童),(2)列出可能参与自然衰老过程和早衰的基因,包括首次提及早衰中的胰岛素样生长因子结合蛋白2,(3)预测WNT16(hsa - mir - 181a - 5p)、解偶联蛋白2(hsa - mir - 26a - 5p和hsa - mir - 124 - 3p)以及胰岛素样生长因子结合蛋白2(hsa - mir - 124 - 3p、hsa - mir - 126 - 3p和hsa - mir - 27b - 3p)的微小RNA和相互作用组,(4)为感兴趣但尚未熟悉此类分析的研究人员展示成熟的用于RNA测序分析的R包的兼容性,以及(5)进行比较蛋白质组学分析以显示我们的RNA测序数据分析与蛋白质表达的相应变化之间的关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36bf/9599154/e2c9fbabfdd2/biomedicines-10-02440-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验