利用化学光遗传学靶向线粒体功能
Targeting Mitochondrial Function with Chemoptogenetics.
作者信息
Romesberg Amy, Van Houten Bennett
机构信息
Department of Biological Sciences, College of Arts and Sciences, Carlow University, 3333 Fifth Avenue, Pittsburgh, PA 15213, USA.
UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA.
出版信息
Biomedicines. 2022 Oct 1;10(10):2459. doi: 10.3390/biomedicines10102459.
Mitochondria are ATP-generating organelles in eukaryotic cells that produce reactive oxygen species (ROS) during oxidative phosphorylation (OXPHOS). Mitochondrial DNA (mtDNA) is packaged within nucleoids and, due to its close proximity to ROS production, endures oxidative base damage. This damage can be repaired by base excision repair (BER) within the mitochondria, or it can be degraded via exonucleases or mitophagy. Persistent mtDNA damage may drive the production of dysfunctional OXPHOS components that generate increased ROS, or OXPHOS components may be directly damaged by ROS, which then can cause more mtDNA damage and create a vicious cycle of ROS production and mitochondrial dysfunction. If mtDNA damage is left unrepaired, mtDNA mutations including deletions can result. The accumulation of mtDNA mutations has been associated with conditions ranging from the aging process to cancer and neurodegenerative conditions, but the sequence of events leading to mtDNA mutations and deletions is yet unknown. Researchers have utilized many systems and agents for generating ROS in mitochondria to observe the downstream effects on mtDNA, ROS, and mitochondrial function; yet, there are various drawbacks to these methodologies that limit their precision. Here, we describe a novel chemoptogenetic approach to target oxidative damage to mitochondria and mtDNA with a high spatial and temporal resolution so that the downstream effects of ROS-induced damage can be measured with a high precision in order to better understand the mechanism of mitochondrial dysfunction in aging, cancer, and neurodegenerative diseases.
线粒体是真核细胞中产生三磷酸腺苷(ATP)的细胞器,在氧化磷酸化过程中会产生活性氧(ROS)。线粒体DNA(mtDNA)被包装在线粒体核内,由于其与ROS产生的位置紧密相邻,容易遭受氧化性碱基损伤。这种损伤可通过线粒体内的碱基切除修复(BER)进行修复,也可通过核酸外切酶或线粒体自噬降解。持续的mtDNA损伤可能会促使功能失调的氧化磷酸化组件生成,进而产生更多的ROS,或者氧化磷酸化组件可能会直接被ROS损伤,这又会导致更多的mtDNA损伤,从而形成ROS产生和线粒体功能障碍的恶性循环。如果mtDNA损伤未得到修复,可能会导致包括缺失在内的mtDNA突变。mtDNA突变的积累与从衰老过程到癌症和神经退行性疾病等多种病症有关,但导致mtDNA突变和缺失的事件顺序尚不清楚。研究人员已利用多种系统和试剂在线粒体中产生ROS,以观察其对mtDNA、ROS和线粒体功能的下游影响;然而,这些方法存在各种缺点,限制了它们的精确性。在此,我们描述了一种新型的化学光遗传学方法,可在高空间和时间分辨率下靶向线粒体和mtDNA的氧化损伤,以便能够高精度地测量ROS诱导损伤的下游效应,从而更好地理解衰老、癌症和神经退行性疾病中线粒体功能障碍的机制。