RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA, USA.
MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
Nat Rev Genet. 2019 Feb;20(2):89-108. doi: 10.1038/s41576-018-0073-3.
In animals, PIWI-interacting RNAs (piRNAs) of 21-35 nucleotides in length silence transposable elements, regulate gene expression and fight viral infection. piRNAs guide PIWI proteins to cleave target RNA, promote heterochromatin assembly and methylate DNA. The architecture of the piRNA pathway allows it both to provide adaptive, sequence-based immunity to rapidly evolving viruses and transposons and to regulate conserved host genes. piRNAs silence transposons in the germ line of most animals, whereas somatic piRNA functions have been lost, gained and lost again across evolution. Moreover, most piRNA pathway proteins are deeply conserved, but different animals employ remarkably divergent strategies to produce piRNA precursor transcripts. Here, we discuss how a common piRNA pathway allows animals to recognize diverse targets, ranging from selfish genetic elements to genes essential for gametogenesis.
在动物中,长度为 21-35 个核苷酸的 PIWI 相互作用 RNA (piRNA) 沉默转座元件,调节基因表达并抵抗病毒感染。piRNA 指导 PIWI 蛋白切割靶 RNA,促进异染色质组装并使 DNA 甲基化。piRNA 通路的结构使其既能为快速进化的病毒和转座子提供基于序列的适应性免疫,又能调节保守的宿主基因。piRNA 在大多数动物的生殖系中沉默转座子,而体细胞 piRNA 功能在进化过程中已经丢失、获得和再次丢失。此外,大多数 piRNA 通路蛋白高度保守,但不同的动物采用了显著不同的策略来产生 piRNA 前体转录本。在这里,我们讨论了共同的 piRNA 通路如何使动物能够识别从自私的遗传元件到配子发生所必需的基因等各种靶标。