Rade Jaydeep, Zhang Juntao, Sarkar Soumik, Krishnamurthy Adarsh, Ren Juan, Sarkar Anwesha
Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, USA.
Mechanical Engineering, Iowa State University, Ames, IA 50011, USA.
Bioengineering (Basel). 2022 Oct 5;9(10):522. doi: 10.3390/bioengineering9100522.
Atomic force microscopy (AFM) provides a platform for high-resolution topographical imaging and the mechanical characterization of a wide range of samples, including live cells, proteins, and other biomolecules. AFM is also instrumental for measuring interaction forces and binding kinetics for protein-protein or receptor-ligand interactions on live cells at a single-molecule level. However, performing force measurements and high-resolution imaging with AFM and data analytics are time-consuming and require special skill sets and continuous human supervision. Recently, researchers have explored the applications of artificial intelligence (AI) and deep learning (DL) in the bioimaging field. However, the applications of AI to AFM operations for live-cell characterization are little-known. In this work, we implemented a DL framework to perform automatic sample selection based on the cell shape for AFM probe navigation during AFM biomechanical mapping. We also established a closed-loop scanner trajectory control for measuring multiple cell samples at high speed for automated navigation. With this, we achieved a 60× speed-up in AFM navigation and reduced the time involved in searching for the particular cell shape in a large sample. Our innovation directly applies to many bio-AFM applications with AI-guided intelligent automation through image data analysis together with smart navigation.
原子力显微镜(AFM)为高分辨率形貌成像以及包括活细胞、蛋白质和其他生物分子在内的多种样品的力学特性表征提供了一个平台。AFM在单分子水平上测量活细胞上蛋白质-蛋白质或受体-配体相互作用的相互作用力和结合动力学方面也发挥着重要作用。然而,使用AFM进行力测量、高分辨率成像以及数据分析既耗时,又需要特殊的技能组合和持续的人工监督。最近,研究人员探索了人工智能(AI)和深度学习(DL)在生物成像领域的应用。然而,AI在用于活细胞表征的AFM操作中的应用却鲜为人知。在这项工作中,我们实现了一个深度学习框架,用于在AFM生物力学映射过程中基于细胞形状进行自动样本选择,以引导AFM探针导航。我们还建立了一个闭环扫描器轨迹控制,以便高速测量多个细胞样本以实现自动导航。通过这种方式,我们在AFM导航中实现了60倍的加速,并减少了在大样本中寻找特定细胞形状所花费的时间。我们的创新通过图像数据分析和智能导航直接应用于许多具有AI引导智能自动化的生物AFM应用。