Suppr超能文献

利用深度学习实现单分子自主扫描探针显微镜成像。

Enabling autonomous scanning probe microscopy imaging of single molecules with deep learning.

机构信息

Department of Biomedical Science, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden and Biofilms-Research Center for Biointerfaces, Malmö University, 20506 Malmö, Sweden.

出版信息

Nanoscale. 2021 May 27;13(20):9193-9203. doi: 10.1039/d1nr01109j.

Abstract

Scanning probe microscopies allow investigating surfaces at the nanoscale, in real space and with unparalleled signal-to-noise ratio. However, these microscopies are not used as much as it would be expected considering their potential. The main limitations preventing a broader use are the need of experienced users, the difficulty in data analysis and the time-consuming nature of experiments that require continuous user supervision. In this work, we addressed the latter and developed an algorithm that controlled the operation of an Atomic Force Microscope (AFM) that, without the need of user intervention, allowed acquiring multiple high-resolution images of different molecules. We used DNA on mica as a model sample to test our control algorithm, which made use of two deep learning techniques that so far have not been used for real time SPM automation. One was an object detector, YOLOv3, which provided the location of molecules in the captured images. The second was a Siamese network that could identify the same molecule in different images. This allowed both performing a series of images on selected molecules while incrementing the resolution, as well as keeping track of molecules already imaged at high resolution, avoiding loops where the same molecule would be imaged an unlimited number of times. Overall, our implementation of deep learning techniques brings SPM a step closer to full autonomous operation.

摘要

扫描探针显微镜允许在纳米尺度、真实空间中进行研究,并且具有无与伦比的信噪比。然而,考虑到其潜力,这些显微镜的使用并没有达到预期的程度。限制其更广泛应用的主要限制因素是需要有经验的用户、数据分析的难度以及实验耗时且需要用户持续监督。在这项工作中,我们解决了最后一个问题,并开发了一种算法,该算法可以控制原子力显微镜(AFM)的操作,无需用户干预,即可获取不同分子的多个高分辨率图像。我们使用云母上的 DNA 作为模型样本来测试我们的控制算法,该算法使用了两种迄今为止尚未用于实时 SPM 自动化的深度学习技术。一个是目标探测器 YOLOv3,它提供了捕获图像中分子的位置。第二个是孪生网络,可以识别不同图像中的同一分子。这允许在选定的分子上执行一系列图像,同时增加分辨率,以及跟踪已经在高分辨率下成像的分子,避免同一个分子被无限次成像的循环。总的来说,我们对深度学习技术的实现使 SPM 更接近完全自主操作。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验