Suppr超能文献

在工程化心脏基质中培养心脏成纤维细胞可减少肌成纤维细胞分化,但维持其对周期性拉伸和转化生长因子β1的反应。

Culturing of Cardiac Fibroblasts in Engineered Heart Matrix Reduces Myofibroblast Differentiation but Maintains Their Response to Cyclic Stretch and Transforming Growth Factor β1.

作者信息

Ploeg Meike C, Munts Chantal, Seddiqi Tayeba, Ten Brink Tim J L, Breemhaar Jonathan, Moroni Lorenzo, Prinzen Frits W, van Nieuwenhoven Frans A

机构信息

Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands.

Institute for Technology-Inspired Regenerative Medicine (MERLN), Maastricht University, 6200 MD Maastricht, The Netherlands.

出版信息

Bioengineering (Basel). 2022 Oct 14;9(10):551. doi: 10.3390/bioengineering9100551.

Abstract

Isolation and culturing of cardiac fibroblasts (CF) induces rapid differentiation toward a myofibroblast phenotype, which is partly mediated by the high substrate stiffness of the culture plates. In the present study, a 3D model of Engineered Heart Matrix (EHM) of physiological stiffness (Youngs modulus ~15 kPa) was developed using primary adult rat CF and a natural hydrogel collagen type 1 matrix. CF were equally distributed, viable and quiescent for at least 13 days in EHM and the baseline gene expression of myofibroblast-markers alfa-smooth muscle actin (Acta2), and connective tissue growth factor (Ctgf) was significantly lower, compared to CF cultured in 2D monolayers. CF baseline gene expression of transforming growth factor-beta1 (Tgfβ1) and brain natriuretic peptide (Nppb) was higher in EHM-fibers compared to the monolayers. EHM stimulation by 10% cyclic stretch (1 Hz) increased the gene expression of Nppb (3.0-fold), Ctgf (2.1-fold) and Tgfβ1 (2.3-fold) after 24 h. Stimulation of EHM with TGFβ1 (1 ng/mL, 24 h) induced Tgfβ1 (1.6-fold) and Ctgf (1.6-fold). In conclusion, culturing CF in EHM of physiological stiffness reduced myofibroblast marker gene expression, while the CF response to stretch or TGFβ1 was maintained, indicating that our novel EHM structure provides a good physiological model to study CF function and myofibroblast differentiation.

摘要

心脏成纤维细胞(CF)的分离和培养会诱导其迅速向肌成纤维细胞表型分化,这部分是由培养板的高底物硬度介导的。在本研究中,使用原代成年大鼠CF和天然水凝胶I型胶原基质构建了具有生理硬度(杨氏模量~15 kPa)的工程心脏基质(EHM)三维模型。CF在EHM中均匀分布、存活且至少13天保持静止,与二维单层培养的CF相比,肌成纤维细胞标志物α-平滑肌肌动蛋白(Acta2)和结缔组织生长因子(Ctgf)的基线基因表达显著降低。与单层培养相比,EHM纤维中转化生长因子-β1(Tgfβ1)和脑钠肽(Nppb)的CF基线基因表达更高。10%循环拉伸(1 Hz)刺激EHM 24小时后,Nppb(3.0倍)、Ctgf(2.1倍)和Tgfβ1(2.3倍)的基因表达增加。用TGFβ1(1 ng/mL,24小时)刺激EHM可诱导Tgfβ1(1.6倍)和Ctgf(1.6倍)。总之,在具有生理硬度的EHM中培养CF可降低肌成纤维细胞标志物基因表达,同时维持CF对拉伸或TGFβ1的反应,这表明我们的新型EHM结构为研究CF功能和肌成纤维细胞分化提供了一个良好的生理模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef2c/9598692/061b548c65a3/bioengineering-09-00551-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验