Suppr超能文献

静息态脑电图的相位滞后指数用于识别2型糖尿病轻度认知障碍患者

Phase Lag Index of Resting-State EEG for Identification of Mild Cognitive Impairment Patients with Type 2 Diabetes.

作者信息

Kuang Yuxing, Wu Ziyi, Xia Rui, Li Xingjie, Liu Jun, Dai Yalan, Wang Dan, Chen Shangjie

机构信息

The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China.

Department of Rehabilitation, Affiliated Baoan Hospital of Shenzhen, Southern Medical University (The People's Hospital of Baoan Shenzhen), Shenzhen 518101, China.

出版信息

Brain Sci. 2022 Oct 17;12(10):1399. doi: 10.3390/brainsci12101399.

Abstract

Mild cognitive impairment (MCI) is one of the important comorbidities of type 2 diabetes mellitus (T2DM). It is critical to find appropriate methods for early diagnosis and objective assessment of mild cognitive impairment patients with type 2 diabetes (T2DM-MCI). Our study aimed to investigate potential early alterations in phase lag index (PLI) and determine whether it can distinguish between T2DM-MCI and normal controls with T2DM (T2DM-NC). EEG was recorded in 30 T2DM-MCI patients and 30 T2DM-NC patients. The phase lag index was computed and used in a logistic regression model to discriminate between groups. The correlation between the phase lag index and Montreal Cognitive Assessment (MoCA) score was assessed. The α-band phase lag index was significantly decreased in the T2DM-MCI group compared with the T2DM-NC group and showed a moderate degree of classification accuracy. The MoCA score was positively correlated with the α-band phase lag index (r = 0.4812, moderate association, = 0.015). This work shows that the functional connectivity analysis of EEG may offer an effective way to track the cortical dysfunction linked to the cognitive deterioration of T2DM patients, and the α-band phase lag index may have a role in guiding the diagnosis of T2DM-MCI.

摘要

轻度认知障碍(MCI)是2型糖尿病(T2DM)的重要合并症之一。找到早期诊断和客观评估2型糖尿病合并轻度认知障碍(T2DM-MCI)患者的合适方法至关重要。我们的研究旨在调查相位滞后指数(PLI)的潜在早期变化,并确定其是否能够区分T2DM-MCI患者和2型糖尿病正常对照者(T2DM-NC)。对30例T2DM-MCI患者和30例T2DM-NC患者进行了脑电图(EEG)记录。计算相位滞后指数并将其用于逻辑回归模型以区分两组。评估了相位滞后指数与蒙特利尔认知评估(MoCA)评分之间的相关性。与T2DM-NC组相比,T2DM-MCI组的α波段相位滞后指数显著降低,并显示出中等程度的分类准确性。MoCA评分与α波段相位滞后指数呈正相关(r = 0.4812,中度相关,P = 0.015)。这项工作表明,脑电图的功能连接分析可能为追踪与T2DM患者认知衰退相关的皮质功能障碍提供一种有效方法,并且α波段相位滞后指数可能在指导T2DM-MCI的诊断中发挥作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b16/9599801/c7b1587c79c2/brainsci-12-01399-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验