Department of Biomedical Engineering, Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Korea.
Network and Data Analysis Group, Department of Computer Science and Engineering, Islamic University and Technology (IUT), Gazipur 1704, Bangladesh.
Sensors (Basel). 2022 Apr 17;22(8):3079. doi: 10.3390/s22083079.
Electroencephalography (EEG) is immediate and sensitive to neurological changes resulting from sleep stages and is considered a computing tool for understanding the association between neurological outcomes and sleep stages. EEG is expected to be an efficient approach for sleep stage prediction outside a highly equipped clinical setting compared with multimodal physiological signal-based polysomnography. This study aims to quantify the neurological EEG-biomarkers and predict five-class sleep stages using sleep EEG data. We investigated the three-channel EEG sleep recordings of 154 individuals (mean age of 53.8 ± 15.4 years) from the Haaglanden Medisch Centrum (HMC, The Hague, The Netherlands) open-access public dataset of PhysioNet. The power of fast-wave alpha, beta, and gamma rhythms decreases; and the power of slow-wave delta and theta oscillations gradually increases as sleep becomes deeper. Delta wave power ratios (DAR, DTR, and DTABR) may be considered biomarkers for their characteristics of attenuation in NREM sleep and subsequent increase in REM sleep. The overall accuracy of the C5.0, Neural Network, and CHAID machine-learning models are 91%, 89%, and 84%, respectively, for multi-class classification of the sleep stages. The EEG-based sleep stage prediction approach is expected to be utilized in a wearable sleep monitoring system.
脑电图 (EEG) 对睡眠阶段引起的神经变化具有即时敏感性,被认为是理解神经结果与睡眠阶段之间关联的计算工具。与基于多模态生理信号的多导睡眠图相比,EEG 在高度配备的临床环境之外进行睡眠阶段预测有望成为一种有效的方法。本研究旨在使用睡眠 EEG 数据量化神经 EEG 生物标志物并预测五类睡眠阶段。我们研究了来自哈格伦登医疗中心(HMC,荷兰海牙)公开获取的 PhysioNet 公共数据集的 154 名个体(平均年龄为 53.8 ± 15.4 岁)的三通道 EEG 睡眠记录。快波 alpha、beta 和 gamma 节律的功率降低;而慢波 delta 和 theta 振荡的功率逐渐增加,睡眠变得更深。Delta 波功率比 (DAR、DTR 和 DTABR) 可能被认为是生物标志物,因为它们在 NREM 睡眠中衰减的特征以及随后在 REM 睡眠中增加的特征。C5.0、神经网络和 CHAID 机器学习模型的整体准确性分别为 91%、89%和 84%,用于多类睡眠阶段分类。基于 EEG 的睡眠阶段预测方法有望在可穿戴睡眠监测系统中得到应用。