Suppr超能文献

基于注意力图卷积网络的静息态功能磁共振成像适应性用于脑疾病识别

Resting-State Functional MRI Adaptation with Attention Graph Convolution Network for Brain Disorder Identification.

作者信息

Chu Ying, Ren Haonan, Qiao Lishan, Liu Mingxia

机构信息

School of Mathematics Science, Liaocheng University, Liaocheng 252000, China.

Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

出版信息

Brain Sci. 2022 Oct 20;12(10):1413. doi: 10.3390/brainsci12101413.

Abstract

Multi-site resting-state functional magnetic resonance imaging (rs-fMRI) data can facilitate learning-based approaches to train reliable models on more data. However, significant data heterogeneity between imaging sites, caused by different scanners or protocols, can negatively impact the generalization ability of learned models. In addition, previous studies have shown that graph convolution neural networks (GCNs) are effective in mining fMRI biomarkers. However, they generally ignore the potentially different contributions of brain regions- of-interest (ROIs) to automated disease diagnosis/prognosis. In this work, we propose a multi-site rs-fMRI adaptation framework with attention GCN (AGCN) for brain disorder identification. Specifically, the proposed AGCN consists of three major components: (1) a node representation learning module based on GCN to extract rs-fMRI features from functional connectivity networks, (2) a node attention mechanism module to capture the contributions of ROIs, and (3) a domain adaptation module to alleviate the differences in data distribution between sites through the constraint of mean absolute error and covariance. The AGCN not only reduces data heterogeneity across sites, but also improves the interpretability of the learning algorithm by exploring important ROIs. Experimental results on the public ABIDE database demonstrate that our method achieves remarkable performance in fMRI-based recognition of autism spectrum disorders.

摘要

多站点静息态功能磁共振成像(rs-fMRI)数据有助于基于学习的方法在更多数据上训练可靠的模型。然而,由不同扫描仪或协议导致的成像站点之间显著的数据异质性会对学习模型的泛化能力产生负面影响。此外,先前的研究表明,图卷积神经网络(GCN)在挖掘fMRI生物标志物方面是有效的。然而,它们通常忽略了感兴趣脑区(ROI)对自动疾病诊断/预后的潜在不同贡献。在这项工作中,我们提出了一种用于脑疾病识别的带有注意力GCN(AGCN)的多站点rs-fMRI适应框架。具体而言,所提出的AGCN由三个主要组件组成:(1)基于GCN的节点表示学习模块,用于从功能连接网络中提取rs-fMRI特征;(2)节点注意力机制模块,用于捕捉ROI的贡献;(3)域适应模块,通过平均绝对误差和协方差的约束来减轻站点之间数据分布的差异。AGCN不仅减少了跨站点的数据异质性,还通过探索重要的ROI提高了学习算法的可解释性。在公共ABIDE数据库上的实验结果表明,我们的方法在基于fMRI的自闭症谱系障碍识别中取得了显著的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48be/9599902/590361fcdd0e/brainsci-12-01413-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验