基于张量学习的数字化乳腺X线摄影异常检测
Tensor-Based Learning for Detecting Abnormalities on Digital Mammograms.
作者信息
Tzortzis Ioannis N, Davradou Agapi, Rallis Ioannis, Kaselimi Maria, Makantasis Konstantinos, Doulamis Anastasios, Doulamis Nikolaos
机构信息
Department of Rural Surveying Engineering and Geoinformatics Engineering, National Technical University of Athens, 157 80 Athens, Greece.
Department of Artificial Intelligence, University of Malta, MSD 2080 Msida, Malta.
出版信息
Diagnostics (Basel). 2022 Oct 1;12(10):2389. doi: 10.3390/diagnostics12102389.
In this study, we propose a tensor-based learning model to efficiently detect abnormalities on digital mammograms. Due to the fact that the availability of medical data is limited and often restricted by GDPR (general data protection regulation) compliance, the need for more sophisticated and less data-hungry approaches is urgent. Accordingly, our proposed artificial intelligence framework utilizes the canonical polyadic decomposition to decrease the trainable parameters of the wrapped Rank-R FNN model, leading to efficient learning using small amounts of data. Our model was evaluated on the open source digital mammographic database INBreast and compared with state-of-the-art models in this domain. The experimental results show that the proposed solution performs well in comparison with the other deep learning models, such as AlexNet and SqueezeNet, achieving 90% ± 4% accuracy and an F1 score of 84% ± 5%. Additionally, our framework tends to attain more robust performance with small numbers of data and is computationally lighter for inference purposes, due to the small number of trainable parameters.
在本研究中,我们提出了一种基于张量的学习模型,以有效检测数字化乳腺钼靶图像上的异常情况。由于医学数据的可用性有限,且常常受到通用数据保护条例(GDPR)合规性的限制,因此迫切需要更复杂且对数据需求较少的方法。相应地,我们提出的人工智能框架利用典范多向分解来减少包装后的秩为R的前馈神经网络(FNN)模型的可训练参数,从而能够使用少量数据进行高效学习。我们的模型在开源数字化乳腺钼靶数据库INBreast上进行了评估,并与该领域的先进模型进行了比较。实验结果表明,与其他深度学习模型(如AlexNet和SqueezeNet)相比,我们提出的解决方案表现良好,准确率达到90%±4%,F1分数为84%±5%。此外,由于可训练参数数量较少,我们的框架在数据量较少时往往能获得更稳健的性能,并且在推理时计算量更小。
相似文献
Diagnostics (Basel). 2022-10-1
Comput Methods Programs Biomed. 2020-11
Adv Exp Med Biol. 2020
Comput Methods Programs Biomed. 2022-6
Comput Methods Programs Biomed. 2022-6
Comput Methods Programs Biomed. 2021-3
Comput Biol Med. 2021-4
引用本文的文献
Bioengineering (Basel). 2025-8-20
本文引用的文献
Comput Methods Programs Biomed. 2022-6
Int J Cancer. 2021-4-5
NPJ Digit Med. 2020-9-14
Can Assoc Radiol J. 2021-2
AJR Am J Roentgenol. 2019-11-12
IEEE Trans Med Imaging. 2020-4
CA Cancer J Clin. 2019-10-2