Suppr超能文献

使用机器学习和SHapley加法解释(SHAP)方法评估掺入废玻璃粉的水泥砂浆原材料的强度和影响。

Evaluating the Strength and Impact of Raw Ingredients of Cement Mortar Incorporating Waste Glass Powder Using Machine Learning and SHapley Additive ExPlanations (SHAP) Methods.

作者信息

Alkadhim Hassan Ali, Amin Muhammad Nasir, Ahmad Waqas, Khan Kaffayatullah, Nazar Sohaib, Faraz Muhammad Iftikhar, Imran Muhammad

机构信息

Department of Civil and Environmental Engineering, College of Engineering, King Faisal University, Al-Ahsa 31982, Saudi Arabia.

Department of Civil Engineering, COMSATS University Islamabad, Abbottabad 22060, Pakistan.

出版信息

Materials (Basel). 2022 Oct 20;15(20):7344. doi: 10.3390/ma15207344.

Abstract

This research employed machine learning (ML) and SHapley Additive ExPlanations (SHAP) methods to assess the strength and impact of raw ingredients of cement mortar (CM) incorporated with waste glass powder (WGP). The data required for this study were generated using an experimental approach. Two ML methods were employed, i.e., gradient boosting and random forest, for compressive strength (CS) and flexural strength (FS) estimation. The performance of ML approaches was evaluated by comparing the coefficient of determination (R), statistical checks, k-fold assessment, and analyzing the variation between experimental and estimated strength. The results of the ML-based modeling approaches revealed that the gradient boosting model had a good degree of precision, but the random forest model predicted the strength of the WGP-based CM with a greater degree of precision for CS and FS prediction. The SHAP analysis revealed that fine aggregate was a critical raw material, with a stronger negative link to the strength of the material, whereas WGP and cement had a greater positive effect on the strength of CM. Utilizing such approaches will benefit the building sector by supporting the progress of rapid and inexpensive approaches for identifying material attributes and the impact of raw ingredients.

摘要

本研究采用机器学习(ML)和SHapley加法解释(SHAP)方法,评估掺有废玻璃粉(WGP)的水泥砂浆(CM)原材料的强度和影响。本研究所需的数据通过实验方法生成。采用了两种机器学习方法,即梯度提升和随机森林,用于抗压强度(CS)和抗折强度(FS)估计。通过比较决定系数(R)、统计检验、k折评估以及分析实验强度和估计强度之间的差异,对机器学习方法的性能进行了评估。基于机器学习的建模方法结果表明,梯度提升模型具有良好的精度,但随机森林模型在预测CS和FS时,对掺WGP的CM强度预测精度更高。SHAP分析表明,细集料是关键原材料,与材料强度的负相关更强,而WGP和水泥对CM强度的正向影响更大。利用这些方法将有助于建筑行业,支持快速且低成本地识别材料属性和原材料影响的方法的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d203/9609276/e629047d439f/materials-15-07344-g001a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验