Suppr超能文献

基于多物理场遗传表达式编程的先进机器学习建模方法用于预测纤维增强塑料约束混凝土的抗压强度

Advanced Machine Learning Modeling Approach for Prediction of Compressive Strength of FRP Confined Concrete Using Multiphysics Genetic Expression Programming.

作者信息

Ilyas Israr, Zafar Adeel, Afzal Muhammad Talal, Javed Muhammad Faisal, Alrowais Raid, Althoey Fadi, Mohamed Abdeliazim Mustafa, Mohamed Abdullah, Vatin Nikolai Ivanovich

机构信息

University of Science and Technology (NUST), Sector H-12, Islamabad 44000, Pakistan.

Punjab Irrigation Department, Government of Punjab, Old Anarkali Road, Lahore 54000, Pakistan.

出版信息

Polymers (Basel). 2022 Apr 27;14(9):1789. doi: 10.3390/polym14091789.

Abstract

The purpose of this article is to demonstrate the potential of gene expression programming (GEP) in anticipating the compressive strength of circular CFRP confined concrete columns. A new GEP model has been developed based on a credible and extensive database of 828 data points to date. Numerous analyses were carried out to evaluate and validate the presented model by comparing them with those presented previously by different researchers along with external validation comparison. In comparison to other artificial intelligence (AI) techniques, such as Artificial Neural Networks (ANN) and the adaptive neuro-fuzzy interface system (ANFIS), only GEP has the capability and robustness to provide output in the form of a simple mathematical relationship that is easy to use. The developed GEP model is also compared with linear and nonlinear regression models to evaluate the performance. Afterwards, a detailed parametric and sensitivity analysis confirms the generalized nature of the newly established model. Sensitivity analysis results indicate the performance of the model by evaluating the relative contribution of explanatory variables involved in development. Moreover, the Taylor diagram is also established to visualize how the proposed model outperformed other existing models in terms of accuracy, efficiency, and being closer to the target. Lastly, the criteria of external validation were also fulfilled by the GEP model much better than other conventional models. These findings show that the presented model effectively forecasts the confined strength of circular concrete columns significantly better than the previously established conventional regression-based models.

摘要

本文的目的是展示基因表达式编程(GEP)在预测圆形碳纤维增强塑料(CFRP)约束混凝土柱抗压强度方面的潜力。基于一个至今已有828个数据点的可靠且广泛的数据库,开发了一种新的GEP模型。通过将其与不同研究人员先前提出的模型进行比较以及外部验证比较,进行了大量分析以评估和验证所提出的模型。与其他人工智能(AI)技术,如人工神经网络(ANN)和自适应神经模糊推理系统(ANFIS)相比,只有GEP有能力且稳健地以易于使用的简单数学关系形式提供输出。还将所开发的GEP模型与线性和非线性回归模型进行比较以评估其性能。之后,详细的参数和敏感性分析证实了新建立模型的通用性。敏感性分析结果通过评估参与模型开发的解释变量的相对贡献来表明模型的性能。此外,还建立了泰勒图以直观展示所提出的模型在准确性、效率以及与目标的接近程度方面如何优于其他现有模型。最后,GEP模型比其他传统模型更好地满足了外部验证的标准。这些发现表明,所提出的模型在预测圆形混凝土柱的约束强度方面比先前建立的基于传统回归的模型有效得多。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bec/9100819/b2c66d3f3567/polymers-14-01789-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验