Suppr超能文献

可解释人工智能用于研究设计变量对双稳态复合材料层合板静态特性的贡献。

Explainable Artificial Intelligence to Investigate the Contribution of Design Variables to the Static Characteristics of Bistable Composite Laminates.

作者信息

Saberi Saeid, Nasiri Hamid, Ghorbani Omid, Friswell Michael I, Castro Saullo G P

机构信息

Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.

Department of Computer Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 159163-4311, Iran.

出版信息

Materials (Basel). 2023 Jul 31;16(15):5381. doi: 10.3390/ma16155381.

Abstract

Material properties, geometrical dimensions, and environmental conditions can greatly influence the characteristics of bistable composite laminates. In the current work, to understand how each input feature contributes to the curvatures of the stable equilibrium shapes of bistable laminates and the snap-through force to change these configurations, the correlation between these inputs and outputs is studied using a novel explainable artificial intelligence (XAI) approach called SHapley Additive exPlanations (SHAP). SHAP is employed to explain the contribution and importance of the features influencing the curvatures and the snap-through force since XAI models change the data into a form that is more convenient for users to understand and interpret. The principle of minimum energy and the Rayleigh-Ritz method is applied to obtain the responses of the bistable laminates used as the input datasets in SHAP. SHAP effectively evaluates the importance of the input variables to the parameters. The results show that the transverse thermal expansion coefficient and moisture variation have the most impact on the model's output for the transverse curvatures and snap-through force. The eXtreme Gradient Boosting (XGBoost) and Finite Element (FM) methods are also employed to identify the feature importance and validate the theoretical approach, respectively.

摘要

材料特性、几何尺寸和环境条件会极大地影响双稳态复合材料层合板的特性。在当前工作中,为了解每个输入特征如何影响双稳态层合板稳定平衡形状的曲率以及改变这些构型的 snapping-through 力,使用一种名为 SHapley 加性解释(SHAP)的新型可解释人工智能(XAI)方法研究了这些输入与输出之间的相关性。由于 XAI 模型将数据转换为更便于用户理解和解释的形式,因此采用 SHAP 来解释影响曲率和 snapping-through 力的特征的贡献和重要性。应用最小能量原理和瑞利 - 里兹法来获得用作 SHAP 中输入数据集的双稳态层合板的响应。SHAP 有效地评估了输入变量对参数的重要性。结果表明,横向热膨胀系数和湿度变化对横向曲率和 snapping-through 力的模型输出影响最大。还分别采用极端梯度提升(XGBoost)和有限元(FM)方法来确定特征重要性并验证理论方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验