Suppr超能文献

质子交换膜燃料电池催化剂层的微观结构重建与多物理场动态分布模拟

Microstructure Reconstruction and Multiphysics Dynamic Distribution Simulation of the Catalyst Layer in PEMFC.

作者信息

Zhan Zhigang, Song Hao, Yang Xiaoxiang, Jiang Panxing, Chen Rui, Harandi Hesam Bazargan, Zhang Heng, Pan Mu

机构信息

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.

Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, China.

出版信息

Membranes (Basel). 2022 Oct 14;12(10):1001. doi: 10.3390/membranes12101001.

Abstract

Due to the complexity of both material composition and the structure of the catalyst layer (CL) used in the proton-exchange membrane fuel cell (PEMFC), conjugated heat and mass transfer as well as electrochemical processes simultaneously occur through the CL. In this study, a microstructure model of CL was first reconstructed using images acquired by Nano-computed tomography (Nano-CT) of a real sample of CL. Then, the multiphysics dynamic distribution (MPDD) simulation, which is inherently a multiscale approach made of a combination of pore-scale and homogeneous models, was conducted on the reconstructed microstructure model to compute the corresponded heat and mass transport, electrochemical reactions, and water phase-change processes. Considering a computational domain with the size of 4 um and cube shape, this model consisting of mass and heat transport as well as electrochemical reactions reached a stable solution within 3 s as the convergence time. In the presence of sufficient oxygen, proton conduction was identified as the dominant factor determining the strength of the electrochemical reaction. Additionally, it was concluded that current density, temperature, and the distribution of water all exhibit similar distribution trends, which decrease from the interface between CL and the proton-exchange membrane to the interface between CL and the gas-diffusion layer. The present study not only provides an in-depth understanding of the mass and heat transport and electrochemical reaction in the CL microstructure, but it also guides the optimal design and fabrication of CL components and structures, such as improving the local structure to reduce the number of dead pores and large agglomerates, etc.

摘要

由于质子交换膜燃料电池(PEMFC)中使用的催化剂层(CL)的材料组成和结构都很复杂,共轭传热传质以及电化学过程在CL中同时发生。在本研究中,首先使用通过对CL真实样品进行纳米计算机断层扫描(Nano-CT)获取的图像重建了CL的微观结构模型。然后,对重建的微观结构模型进行了多物理场动态分布(MPDD)模拟,该模拟本质上是一种由孔隙尺度模型和均匀模型组合而成的多尺度方法,以计算相应的传热传质、电化学反应和水的相变过程。考虑到一个尺寸为4μm的立方体形状的计算域,这个由传热传质以及电化学反应组成的模型在3s内作为收敛时间达到了稳定解。在有足够氧气的情况下,质子传导被确定为决定电化学反应强度的主导因素。此外,得出的结论是,电流密度、温度和水的分布都呈现出相似趋势,即从CL与质子交换膜的界面到CL与气体扩散层的界面逐渐降低。本研究不仅深入了解了CL微观结构中的传热传质和电化学反应,还指导了CL组件和结构的优化设计与制造,例如改善局部结构以减少死孔和大团聚体的数量等。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d720/9609320/46ad88a68f3b/membranes-12-01001-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验