He Qiuchen, Li Shaobo, Bai Qiang, Zhang Ansi, Yang Jing, Shen Mingming
School of Mechanical Engineering, Guizhou University, Guiyang 550025, China.
State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, China.
Micromachines (Basel). 2022 Sep 30;13(10):1656. doi: 10.3390/mi13101656.
Fault diagnosis methods based on deep learning have progressed greatly in recent years. However, the limited training data and complex work conditions still restrict the application of these intelligent methods. This paper proposes an intelligent bearing fault diagnosis method, i.e., Siamese Vision Transformer, suiting limited training data and complex work conditions. The Siamese Vision Transformer, combining Siamese network and Vision Transformer, is designed to efficiently extract the feature vectors of input samples in high-level space and complete the classification of the fault. In addition, a new loss function combining the Kullback-Liebler divergence both directions is proposed to improve the performance of the proposed model. Furthermore, a new training strategy termed random mask is designed to enhance input data diversity. A comparative test is conducted on the Case Western Reserve University bearing dataset and Paderborn dataset and our method achieves reasonably high accuracy with limited data and satisfactory generation capability for cross-domain tasks.
近年来,基于深度学习的故障诊断方法取得了长足的进步。然而,有限的训练数据和复杂的工作条件仍然限制了这些智能方法的应用。本文提出了一种适用于有限训练数据和复杂工作条件的智能轴承故障诊断方法,即暹罗视觉Transformer。暹罗视觉Transformer结合了暹罗网络和视觉Transformer,旨在在高级空间中高效提取输入样本的特征向量并完成故障分类。此外,还提出了一种结合双向库尔贝克-莱布勒散度的新损失函数,以提高所提模型的性能。此外,还设计了一种名为随机掩码的新训练策略,以增强输入数据的多样性。在凯斯西储大学轴承数据集和帕德博恩数据集上进行了对比测试,我们的方法在有限数据下取得了较高的准确率,并在跨域任务中具有令人满意的生成能力。