文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人血清中细胞纤连蛋白和基质金属蛋白酶-9的芯片标记

Labeling on a Chip of Cellular Fibronectin and Matrix Metallopeptidase-9 in Human Serum.

作者信息

Prabowo Briliant Adhi, Sousa Carole, Cardoso Susana, Freitas Paulo, Fernandes Elisabete

机构信息

International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal.

INESC-MN- Institute for Systems and Computer Engineering-Microsystems and Nanotechnologies,1000-029 Lisbon, Portugal.

出版信息

Micromachines (Basel). 2022 Oct 12;13(10):1722. doi: 10.3390/mi13101722.


DOI:10.3390/mi13101722
PMID:36296077
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9611906/
Abstract

We present a microfluidic chip for protein labeling in the human serum-based matrix. Serum is a complex sample matrix that contains a variety of proteins, and a matrix is used in many clinical tests. In this study, the device performance was tested using commercial serum samples from healthy donors spiked with the following target proteins: cellular fibronectin (c-Fn) and matrix metallopeptidase 9 (MMP9). The microfluidic molds were fabricated using micro milling on acrylic and using stereolithography (SLA) three-dimensional (3D) printing for an alternative method and comparison. A simple quality control was performed for both fabrication mold methods to inspect the channel height of the chip that plays a critical role in the labeling process. The fabricated microfluidic chip shows a good reproducibility and repeatability of the performance for the optimized channel height of 150 µm. The spiked proteins of c-Fn and MMP9 in the human serum-based matrix, were successfully labeled by the functionalized magnetic nanoparticles (MNPs). The biomarker labeling occurring in the serum was compared using a simple matrix sample: phosphate buffer. The measured signals obtained by using a magnetoresistive (MR) biochip platform showed that the labeling using the proposed microfluidic chip is in good agreement for both matrixes, i.e., the analytical performance (sensitivity) obtained with the serum, near the relevant cutoff values, is within the uncertainty of the measurements obtained with a simple and more controlled matrix: phosphate buffer. This finding is promising for stroke patient stratification where these biomarkers are found at high concentrations in the serum.

摘要

我们展示了一种用于在基于人血清的基质中进行蛋白质标记的微流控芯片。血清是一种复杂的样品基质,含有多种蛋白质,并且该基质用于许多临床检测中。在本研究中,使用来自健康供体的商业血清样品加标以下目标蛋白质来测试该设备性能:细胞纤连蛋白(c-Fn)和基质金属肽酶9(MMP9)。微流控模具通过在丙烯酸树脂上进行微铣削制造,并使用立体光刻(SLA)三维(3D)打印作为另一种方法进行比较。对两种制造模具方法都进行了简单的质量控制,以检查在标记过程中起关键作用的芯片通道高度。对于优化后的150 µm通道高度,所制造的微流控芯片显示出良好的性能重现性和重复性。基于人血清基质中的加标蛋白质c-Fn和MMP9,成功地被功能化磁性纳米颗粒(MNPs)标记。使用简单的基质样品:磷酸盐缓冲液,比较了血清中发生的生物标志物标记。使用磁阻(MR)生物芯片平台获得的测量信号表明,使用所提出的微流控芯片进行的标记在两种基质中都具有良好的一致性,即,在血清中获得的分析性能(灵敏度),在接近相关临界值时,处于使用简单且更可控的基质:磷酸盐缓冲液获得的测量不确定度范围内。这一发现对于中风患者分层很有前景,因为在血清中发现这些生物标志物的浓度很高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f910/9611906/e57e89725875/micromachines-13-01722-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f910/9611906/dd0965168c33/micromachines-13-01722-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f910/9611906/acc3d803d7fd/micromachines-13-01722-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f910/9611906/3efde76ae872/micromachines-13-01722-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f910/9611906/d24736d10a1b/micromachines-13-01722-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f910/9611906/1f5db6417244/micromachines-13-01722-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f910/9611906/e57e89725875/micromachines-13-01722-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f910/9611906/dd0965168c33/micromachines-13-01722-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f910/9611906/acc3d803d7fd/micromachines-13-01722-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f910/9611906/3efde76ae872/micromachines-13-01722-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f910/9611906/d24736d10a1b/micromachines-13-01722-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f910/9611906/1f5db6417244/micromachines-13-01722-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f910/9611906/e57e89725875/micromachines-13-01722-g006.jpg

相似文献

[1]
Labeling on a Chip of Cellular Fibronectin and Matrix Metallopeptidase-9 in Human Serum.

Micromachines (Basel). 2022-10-12

[2]
A pump-free microfluidic device for fast magnetic labeling of ischemic stroke biomarkers.

Anal Bioanal Chem. 2022-3

[3]
A combined 3D printing/CNC micro-milling method to fabricate a large-scale microfluidic device with the small size 3D architectures: an application for tumor spheroid production.

Sci Rep. 2020-12-17

[4]
Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components.

Biosensors (Basel). 2022-8-17

[5]
A magnetic nanoparticle-based microfluidic device fabricated using a 3D-printed mould for separation of Escherichia coli from blood.

Mikrochim Acta. 2023-8-18

[6]
Fabrication routes via projection stereolithography for 3D-printing of microfluidic geometries for nucleic acid amplification.

PLoS One. 2020-10-28

[7]
Point-of-care quantification of serum cellular fibronectin levels for stratification of ischemic stroke patients.

Nanomedicine. 2020-11

[8]
3D Printing Solutions for Microfluidic Chip-To-World Connections.

Micromachines (Basel). 2018-2-6

[9]
A 3D printed microfluidic perfusion device for multicellular spheroid cultures.

Biofabrication. 2017-9-11

[10]
Immuno-biosensor on a chip: a self-powered microfluidic-based electrochemical biosensing platform for point-of-care quantification of proteins.

Lab Chip. 2021-12-21

引用本文的文献

[1]
Editorial Perspective: Advancements in Microfluidics and Biochip Technologies.

Micromachines (Basel). 2025-1-11

[2]
Application of Surface Plasmon Resonance Imaging Biosensors for Determination of Fibronectin, Laminin-5, and Type IV Collagen in Plasma, Urine, and Tissue of Renal Cell Carcinoma.

Sensors (Basel). 2024-9-30

本文引用的文献

[1]
An integrated microfluidic system for multi-target biochemical analysis of a single drop of blood.

Talanta. 2022-11-1

[2]
A Low-Cost Microfluidic Method for Microplastics Identification: Towards Continuous Recognition.

Micromachines (Basel). 2022-3-23

[3]
Perspectives in translating microfluidic devices from laboratory prototyping into scale-up production.

Biomicrofluidics. 2022-3-17

[4]
Immunoaffinity monoliths for multiplexed extraction of preterm birth biomarkers from human blood serum in 3D printed microfluidic devices.

Analyst. 2022-2-14

[5]
A pump-free microfluidic device for fast magnetic labeling of ischemic stroke biomarkers.

Anal Bioanal Chem. 2022-3

[6]
New conductive filament ready-to-use for 3D-printing electrochemical (bio)sensors: Towards the detection of SARS-CoV-2.

Anal Chim Acta. 2022-1-25

[7]
Lab-on-Paper Devices for Diagnosis of Human Diseases Using Urine Samples-A Review.

Biosensors (Basel). 2021-8-3

[8]
Association of Matrix Metalloproteinase 9 and Cellular Fibronectin and Outcome in Acute Ischemic Stroke: A Systematic Review and Meta-Analysis.

Front Neurol. 2020-11-24

[9]
Point-of-care quantification of serum cellular fibronectin levels for stratification of ischemic stroke patients.

Nanomedicine. 2020-11

[10]
Microfluidic systems for cancer diagnostics.

Curr Opin Biotechnol. 2020-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索