文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

3D Printing Solutions for Microfluidic Chip-To-World Connections.

作者信息

van den Driesche Sander, Lucklum Frieder, Bunge Frank, Vellekoop Michael J

机构信息

Institute for Microsensors, -actuators and ⁻systems (IMSAS), University of Bremen, 28359 Bremen, Germany.

Microsystems Center Bremen (MCB), University of Bremen, 28359 Bremen, Germany.

出版信息

Micromachines (Basel). 2018 Feb 6;9(2):71. doi: 10.3390/mi9020071.


DOI:10.3390/mi9020071
PMID:30393347
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6187806/
Abstract

The connection of microfluidic devices to the outer world by tubes and wires is an underestimated issue. We present methods based on 3D printing to realize microfluidic chip holders with reliable fluidic and electric connections. The chip holders are constructed by microstereolithography, an additive manufacturing technique with sub-millimeter resolution. The fluidic sealing between the chip and holder is achieved by placing O-rings, partly integrated into the 3D-printed structure. The electric connection of bonding pads located on microfluidic chips is realized by spring-probes fitted within the printed holder. Because there is no gluing or wire bonding necessary, it is easy to change the chip in the measurement setup. The spring probes and O-rings are aligned automatically because of their fixed position within the holder. In the case of bioanalysis applications such as cells, a limitation of 3D-printed objects is the leakage of cytotoxic residues from the printing material, cured resin. This was solved by coating the 3D-printed structures with parylene-C. The combination of silicon/glass microfluidic chips fabricated with highly-reliable clean-room technology and 3D-printed chip holders for the chip-to-world connection is a promising solution for applications where biocompatibility, optical transparency and accurate sample handling must be assured. 3D printing technology for such applications will eventually arise, enabling the fabrication of complete microfluidic devices.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ef9/6187806/6a8d720645ae/micromachines-09-00071-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ef9/6187806/5004f221c76e/micromachines-09-00071-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ef9/6187806/51a2b116801b/micromachines-09-00071-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ef9/6187806/9161ac52368d/micromachines-09-00071-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ef9/6187806/68d3305736f2/micromachines-09-00071-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ef9/6187806/0129ba25381a/micromachines-09-00071-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ef9/6187806/fc3ecd8124d8/micromachines-09-00071-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ef9/6187806/29e95a9ec65b/micromachines-09-00071-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ef9/6187806/6a8d720645ae/micromachines-09-00071-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ef9/6187806/5004f221c76e/micromachines-09-00071-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ef9/6187806/51a2b116801b/micromachines-09-00071-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ef9/6187806/9161ac52368d/micromachines-09-00071-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ef9/6187806/68d3305736f2/micromachines-09-00071-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ef9/6187806/0129ba25381a/micromachines-09-00071-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ef9/6187806/fc3ecd8124d8/micromachines-09-00071-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ef9/6187806/29e95a9ec65b/micromachines-09-00071-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ef9/6187806/6a8d720645ae/micromachines-09-00071-g008.jpg

相似文献

[1]
3D Printing Solutions for Microfluidic Chip-To-World Connections.

Micromachines (Basel). 2018-2-6

[2]
Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components.

Biosensors (Basel). 2022-8-17

[3]
Fabrication routes via projection stereolithography for 3D-printing of microfluidic geometries for nucleic acid amplification.

PLoS One. 2020-10-28

[4]
3D Printed Microfluidics.

Annu Rev Anal Chem (Palo Alto Calif). 2020-6-12

[5]
Adhesive bonding strategies to fabricate high-strength and transparent 3D printed microfluidic device.

Biomicrofluidics. 2020-4-20

[6]
Applied tutorial for the design and fabrication of biomicrofluidic devices by resin 3D printing.

Anal Chim Acta. 2022-5-29

[7]
Highly Fluorinated Methacrylates for Optical 3D Printing of Microfluidic Devices.

Micromachines (Basel). 2018-3-8

[8]
The crossing and integration between microfluidic technology and 3D printing for organ-on-chips.

J Mater Chem B. 2018-10-21

[9]
Portable all-in-one automated microfluidic system (PAMICON) with 3D-printed chip using novel fluid control mechanism.

Sci Rep. 2021-9-28

[10]
Dynamic phase control with printing and fluidic materials' interaction by inkjet printing an RF sensor directly on a stereolithographic 3D printed microfluidic structure.

Lab Chip. 2021-11-9

引用本文的文献

[1]
Simple-Flow: A 3D-Printed Multiwell Flow Plate to Coculture Primary Human Lung Cells at the Air-Liquid Interface.

ACS Biomater Sci Eng. 2025-1-13

[2]
Polymeric Microfluidic Fuel Cells with Controlled Printed Patterns.

3D Print Addit Manuf. 2024-2-1

[3]
Paper-Based Microfluidic Chips for Food Hazard Factor Detection: Fabrication, Modification, and Application.

Foods. 2023-11-13

[4]
Parylene-C Coating Protects Resin-3D-Printed Devices from Material Erosion and Prevents Cytotoxicity toward Primary Cells.

ACS Appl Bio Mater. 2023-8-21

[5]
A Review of Microfluidic Experimental Designs for Nanoparticle Synthesis.

Int J Mol Sci. 2022-7-27

[6]
Wettability and Surface Roughness of Parylene C on Three-Dimensional-Printed Photopolymers.

Materials (Basel). 2022-6-11

[7]
A millifluidic chip for cultivation of fish embryos and toxicity testing fabricated by 3D printing technology.

RSC Adv. 2021-6-8

[8]
Class II biocompatible E-Shell 300 3D printing material causes severe developmental toxicity in embryos and reduced cell proliferation - implications for 3D printed microfluidics.

RSC Adv. 2021-5-4

[9]
Silicon Nitride-Based Micro-Apertures Coated with Parylene for the Investigation of Pore Proteins Fused in Free-Standing Lipid Bilayers.

Membranes (Basel). 2022-3-9

[10]
Recent Advances and Future Perspectives on Microfluidic Mix-and-Jet Sample Delivery Devices.

Micromachines (Basel). 2021-5-7

本文引用的文献

[1]
Controlled, synchronized actuation of microdroplets by gravity in a superhydrophobic, 3D-printed device.

Anal Chim Acta. 2017-8-14

[2]
Additive Biotech-Chances, challenges, and recent applications of additive manufacturing technologies in biotechnology.

N Biotechnol. 2017-9-7

[3]
3D-printing zirconia implants; a dream or a reality? An in-vitro study evaluating the dimensional accuracy, surface topography and mechanical properties of printed zirconia implant and discs.

J Mech Behav Biomed Mater. 2017-8-16

[4]
Additive Manufacturing Techniques in Prosthodontics: Where Do We Currently Stand? A Critical Review.

Int J Prosthodont. 2017

[5]
Custom 3D printer and resin for 18 μm × 20 μm microfluidic flow channels.

Lab Chip. 2017-8-22

[6]
Microfluidic Platform for the Long-Term On-Chip Cultivation of Mammalian Cells for Lab-On-A-Chip Applications.

Sensors (Basel). 2017-7-10

[7]
The Boom in 3D-Printed Sensor Technology.

Sensors (Basel). 2017-5-19

[8]
SmartFluo: A Method and Affordable Adapter to Measure Chlorophyll a Fluorescence with Smartphones.

Sensors (Basel). 2017-3-25

[9]
3D printed auto-mixing chip enables rapid smartphone diagnosis of anemia.

Biomicrofluidics. 2016-10-5

[10]
3D-printed Microfluidic Devices: Fabrication, Advantages and Limitations-a Mini Review.

Anal Methods. 2016-8-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索