Suppr超能文献

基于深度学习算法驱动的智能拉曼光谱方法在冠心宁片生产过程质量控制中的应用。

Application of Deep-Learning Algorithm Driven Intelligent Raman Spectroscopy Methodology to Quality Control in the Manufacturing Process of Guanxinning Tablets.

机构信息

College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.

Chiatai Qingchunbao Pharmaceutical Co., Ltd., Hangzhou 310023, China.

出版信息

Molecules. 2022 Oct 17;27(20):6969. doi: 10.3390/molecules27206969.

Abstract

Coupled with the convolutional neural network (CNN), an intelligent Raman spectroscopy methodology for rapid quantitative analysis of four pharmacodynamic substances and soluble solid in the manufacture process of Guanxinning tablets was established. Raman spectra of 330 real samples were collected by a portable Raman spectrometer. The contents of danshensu, ferulic acid, rosmarinic acid, and salvianolic acid B were determined with high-performance liquid chromatography-diode array detection (HPLC-DAD), while the content of soluble solid was determined by using an oven-drying method. In the establishing of the CNN calibration model, the spectral characteristic bands were screened out by a competitive adaptive reweighted sampling (CARS) algorithm. The performance of the CNN model is evaluated by root mean square error of calibration (RMSEC), root mean square error of cross-validation (RMSECV), root mean square error of prediction (RMSEP), coefficient of determination of calibration (Rc2), coefficient of determination of cross-validation (Rcv2), and coefficient of determination of validation (Rp2). The Rp2 values for soluble solid, salvianolic acid B, danshensu, ferulic acid, and rosmarinic acid are 0.9415, 0.9246, 0.8458, 0.8667, and 0.8491, respectively. The established model was used for the analysis of three batches of unknown samples from the manufacturing process of Guanxinning tablets. As the results show, Raman spectroscopy is faster and more convenient than that of conventional methods, which is helpful for the implementation of process analysis technology (PAT) in the manufacturing process of Guanxinning tablets.

摘要

结合卷积神经网络(CNN),建立了一种用于快速定量分析冠心宁片剂制造过程中四种药效物质和可溶性固形物的智能拉曼光谱方法。使用便携式拉曼光谱仪采集了 330 个真实样品的拉曼光谱。采用高效液相色谱-二极管阵列检测(HPLC-DAD)测定丹参素、阿魏酸、迷迭香酸和丹酚酸 B 的含量,而采用烘箱干燥法测定可溶性固形物的含量。在建立 CNN 校准模型时,通过竞争自适应重加权采样(CARS)算法筛选出光谱特征波段。通过校准均方根误差(RMSEC)、交叉验证均方根误差(RMSECV)、预测均方根误差(RMSEP)、校准决定系数(Rc2)、交叉验证决定系数(Rcv2)和验证决定系数(Rp2)评估 CNN 模型的性能。可溶性固形物、丹酚酸 B、丹参素、阿魏酸和迷迭香酸的 Rp2 值分别为 0.9415、0.9246、0.8458、0.8667 和 0.8491。该模型用于分析来自冠心宁片剂制造过程的三批未知样品。结果表明,与传统方法相比,拉曼光谱法更快、更方便,有助于在冠心宁片剂制造过程中实施过程分析技术(PAT)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44f5/9609342/4c56c2a88017/molecules-27-06969-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验