VisionMetric Ltd., Canterbury, Kent, CT2 7FG, UK.
Analyst. 2017 Oct 23;142(21):4067-4074. doi: 10.1039/c7an01371j.
Machine learning methods have found many applications in Raman spectroscopy, especially for the identification of chemical species. However, almost all of these methods require non-trivial preprocessing such as baseline correction and/or PCA as an essential step. Here we describe our unified solution for the identification of chemical species in which a convolutional neural network is trained to automatically identify substances according to their Raman spectrum without the need for preprocessing. We evaluated our approach using the RRUFF spectral database, comprising mineral sample data. Superior classification performance is demonstrated compared with other frequently used machine learning algorithms including the popular support vector machine method.
机器学习方法在拉曼光谱学中得到了广泛的应用,特别是在化学物质的识别方面。然而,几乎所有这些方法都需要进行非平凡的预处理,例如基线校正和/或 PCA,作为一个必要的步骤。在这里,我们描述了我们用于化学物质识别的统一解决方案,其中卷积神经网络被训练成根据拉曼光谱自动识别物质,而无需预处理。我们使用 RRUFF 光谱数据库(包含矿物样本数据)来评估我们的方法。与其他常用的机器学习算法(包括流行的支持向量机方法)相比,我们的方法表现出了优越的分类性能。