Djoumessi Yonkeu Anne L, Ndipingwi Miranda M, Tovide Oluwakemi O, Ramoroka Morongwa E, Ikpo Chinwe, Iwuoha Emmanuel I
SensorLab, Chemical Sciences Building, University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa.
Polymers (Basel). 2022 Oct 18;14(20):4400. doi: 10.3390/polym14204400.
In this study, electron-donating semicrystalline generation 1 poly(propylene thiophenoimine)-co-poly(3-hexylthiophene) star copolymer, G1PPT-co-P3HT was chemically prepared for the first time. Copolymerization was achieved with high molecular weight via facile green oxidative reaction. H NMR analyses of the star copolymer demonstrated the presence of 84% regioregular (rr) head-to-tail (HT) P3HT, which accounts for the molecular ordering in some grain regions in the macromolecule's morphology, as revealed by the high-resolution scanning electron microscopy (HRSEM) and Selected Area Electron Diffraction (SAED) images, and X-ray diffraction spectroscopy (XRD) measurements. The star copolymer also exhibited good absorption properties in the ultraviolet-visible (UV-Vis) and the near infrared (NIR) spectral regions, which give rise to an optical energy bandgap value as low as 1.43 eV. A HOMO energy level at -5.53 eV, which is below the air-oxidation threshold, was obtained by cyclic voltammetry (CV). Electrochemical impedance spectroscopy (EIS) ascertained the semiconducting properties of the macromolecule, which is characterized by a charge transfer resistance, , value of 3.57 kΩ and a Bode plot-phase angle value of 75°. The combination of the EIS properties of G1PPT-co-P3HT and its highly electron-donating capability in bulk heterojunction (BHJ) active layer containing a perylene derivative, as demonstrated by photoluminescence quenching coupled to the observed Förster Resonance charge transfer, suggests its suitability as an electron-donor material for optoelectronic and photovoltaic devices.
在本研究中,首次通过化学方法制备了供电子型半结晶第1代聚(丙基苯并噻吩亚胺)-共聚(3-己基噻吩)星形共聚物,即G1PPT-co-P3HT。通过简便的绿色氧化反应实现了高分子量的共聚。星形共聚物的1H NMR分析表明存在84%的区域规整(rr)头对尾(HT)P3HT,这解释了高分子形态中某些晶粒区域的分子有序性,高分辨率扫描电子显微镜(HRSEM)、选区电子衍射(SAED)图像以及X射线衍射光谱(XRD)测量结果均揭示了这一点。该星形共聚物在紫外可见(UV-Vis)和近红外(NIR)光谱区域也表现出良好的吸收特性,其光学能带隙值低至1.43 eV。通过循环伏安法(CV)获得了低于空气氧化阈值的-5.53 eV的最高占据分子轨道(HOMO)能级。电化学阻抗谱(EIS)确定了该大分子的半导体特性,其特征在于电荷转移电阻为3.57 kΩ,波特图相角值为75°。G1PPT-co-P3HT的EIS特性与其在含有苝衍生物的本体异质结(BHJ)活性层中的高供电子能力相结合(如通过光致发光猝灭与观察到的福斯特共振电荷转移所证明),表明其适合作为光电器件和光伏器件的电子供体材料。