Suppr超能文献

基于并行虹膜定位算法和深度学习虹膜验证的虹膜识别方法。

Iris Recognition Method Based on Parallel Iris Localization Algorithm and Deep Learning Iris Verification.

机构信息

Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China.

Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Sensors (Basel). 2022 Oct 12;22(20):7723. doi: 10.3390/s22207723.

Abstract

Biometric recognition technology has been widely used in various fields of society. Iris recognition technology, as a stable and convenient biometric recognition technology, has been widely used in security applications. However, the iris images collected in the actual non-cooperative environment have various noises. Although mainstream iris recognition methods based on deep learning have achieved good recognition accuracy, the intention is to increase the complexity of the model. On the other hand, what the actual optical system collects is the original iris image that is not normalized. The mainstream iris recognition scheme based on deep learning does not consider the iris localization stage. In order to solve the above problems, this paper proposes an effective iris recognition scheme consisting of the iris localization and iris verification stages. For the iris localization stage, we used the parallel Hough circle to extract the inner circle of the iris and the Daugman algorithm to extract the outer circle of the iris, and for the iris verification stage, we developed a new lightweight convolutional neural network. The architecture consists of a deep residual network module and a residual pooling layer which is introduced to effectively improve the accuracy of iris verification. Iris localization experiments were conducted on 400 iris images collected under a non-cooperative environment. Compared with its processing time on a graphics processing unit with a central processing unit architecture, the experimental results revealed that the speed was increased by 26, 32, 36, and 21 times at 4 different iris datasets, respectively, and the effective iris localization accuracy is achieved. Furthermore, we chose four representative iris datasets collected under a non-cooperative environment for the iris verification experiments. The experimental results demonstrated that the network structure could achieve high-precision iris verification with fewer parameters, and the equal error rates are 1.08%, 1.01%, 1.71%, and 1.11% on 4 test databases, respectively.

摘要

生物识别技术已经广泛应用于社会的各个领域。虹膜识别技术作为一种稳定便捷的生物识别技术,已经广泛应用于安全领域。然而,实际非合作环境中采集的虹膜图像存在各种噪声。虽然基于深度学习的主流虹膜识别方法已经取得了良好的识别精度,但目的是增加模型的复杂性。另一方面,实际光学系统采集的是未经归一化的原始虹膜图像。基于深度学习的主流虹膜识别方案不考虑虹膜定位阶段。为了解决上述问题,本文提出了一种有效的虹膜识别方案,由虹膜定位和虹膜验证两个阶段组成。对于虹膜定位阶段,我们使用平行霍夫圆提取虹膜的内圆,使用 Daugman 算法提取虹膜的外圆;对于虹膜验证阶段,我们开发了一种新的轻量级卷积神经网络。该架构由一个深度残差网络模块和一个残差池化层组成,引入了残差池化层可以有效地提高虹膜验证的准确性。在非合作环境下采集的 400 张虹膜图像上进行了虹膜定位实验。与在具有中央处理器架构的图形处理单元上的处理时间相比,实验结果表明,在 4 个不同的虹膜数据集上,速度分别提高了 26、32、36 和 21 倍,实现了有效的虹膜定位精度。此外,我们选择了四个在非合作环境下采集的具有代表性的虹膜数据集进行虹膜验证实验。实验结果表明,该网络结构可以用较少的参数实现高精度的虹膜验证,在 4 个测试数据库上的等错误率分别为 1.08%、1.01%、1.71%和 1.11%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa6e/9611168/539bed542e5d/sensors-22-07723-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验