Siemons Marijn E, Kapitein Lukas C, Stallinga Sjoerd
Opt Express. 2022 Aug 1;30(16):28290-28300. doi: 10.1364/OE.461750.
Single-molecule localization microscopy has developed into a widely used technique to overcome the diffraction limit and enables 3D localization of single-emitters with nanometer precision. A widely used method to enable 3D encoding is to use a cylindrical lens or a phase mask to engineer the point spread function (PSF). The performance of these PSFs is often assessed by comparing the precision they achieve, ignoring accuracy. Nonetheless, accurate localization is required in many applications, such as multi-plane imaging, measuring and modelling of physical processes based on volumetric data, and 3D particle averaging. However, there are PSF model mismatches in the localization schemes due to how reference PSFs are obtained, look-up-tables are created, or spots are fitted. Currently there is little insight in how these model mismatches give rise to systematic axial localization errors, how large these errors are, and how to mitigate them. In this theoretical and simulation work we use a vector PSF model, which incorporates super-critical angle fluorescence (SAF) and the appropriate aplanatic correction factor, to analyze the errors in z-localization. We introduce theory for defining the focal plane in SAF conditions and analyze the predicted axial errors for an astigmatic PSF, double-helix PSF, and saddle-point PSF. These simulations indicate that the absolute axial biases can be as large as 140 nm, 250 nm, and 120 nm for the astigmatic, saddle-point, and double-helix PSF respectively, with relative errors of more than 50%. Finally, we discuss potential experimental methods to verify these findings and propose a workflow to mitigate these effects.
单分子定位显微镜已发展成为一种广泛应用的技术,用于克服衍射极限,并能够以纳米精度对单个发射体进行三维定位。一种广泛使用的实现三维编码的方法是使用柱面透镜或相位掩膜来设计点扩散函数(PSF)。这些PSF的性能通常通过比较它们所达到的精度来评估,而忽略了准确性。然而,在许多应用中,如多平面成像、基于体积数据的物理过程测量和建模以及三维粒子平均,都需要精确的定位。然而,由于参考PSF的获取方式、查找表的创建方式或光斑的拟合方式,定位方案中存在PSF模型不匹配的问题。目前,对于这些模型不匹配如何导致系统的轴向定位误差、这些误差有多大以及如何减轻这些误差,人们了解甚少。在这项理论和模拟工作中,我们使用了一个矢量PSF模型,该模型包含超临界角荧光(SAF)和适当的消球差校正因子,来分析z定位中的误差。我们引入了在SAF条件下定义焦平面的理论,并分析了像散PSF、双螺旋PSF和鞍点PSF的预测轴向误差。这些模拟表明,像散、鞍点和双螺旋PSF的绝对轴向偏差分别可达140nm、250nm和120nm,相对误差超过50%。最后,我们讨论了验证这些发现的潜在实验方法,并提出了减轻这些影响的工作流程。