Suppr超能文献

在三维单分子定位显微镜中以纳米级精度校正场相关像差。

Correcting field-dependent aberrations with nanoscale accuracy in three-dimensional single-molecule localization microscopy.

作者信息

von Diezmann Alex, Lee Maurice Y, Lew Matthew D, Moerner W E

机构信息

Department of Chemistry, Stanford University, Stanford, California 94305, USA.

Department of Chemistry, Stanford University, Stanford, California 94305, USA; Biophysics Program, Stanford University, Stanford, California 94305, USA.

出版信息

Optica. 2015 Nov 20;2(11):985-993. doi: 10.1364/OPTICA.2.000985. Epub 2015 Nov 19.

Abstract

The localization of single fluorescent molecules enables the imaging of molecular structure and dynamics with subdiffraction precision and can be extended to three dimensions using point spread function (PSF) engineering. However, the nanoscale accuracy of localization throughout a 3D single-molecule microscope's field of view has not yet been rigorously examined. By using regularly spaced subdiffraction apertures filled with fluorescent dyes, we reveal field-dependent aberrations as large as 50-100 nm and show that they can be corrected to less than 25 nm over an extended 3D focal volume. We demonstrate the applicability of this technique for two engineered PSFs, the double-helix PSF and the astigmatic PSF. We expect these results to be broadly applicable to 3D single-molecule tracking and superresolution methods demanding high accuracy.

摘要

单个荧光分子的定位能够以亚衍射精度对分子结构和动力学进行成像,并且可以利用点扩散函数(PSF)工程扩展到三维。然而,在整个三维单分子显微镜视野范围内定位的纳米级精度尚未得到严格检验。通过使用填充有荧光染料的规则间隔亚衍射孔径,我们揭示了高达50 - 100纳米的场依赖像差,并表明在扩展的三维焦体积内可以将其校正到小于25纳米。我们证明了该技术对两种工程化PSF(双螺旋PSF和像散PSF)的适用性。我们期望这些结果能广泛应用于要求高精度的三维单分子跟踪和超分辨率方法。

相似文献

1
2
Optimal 3D single-molecule localization for superresolution microscopy with aberrations and engineered point spread functions.
Proc Natl Acad Sci U S A. 2012 Jan 17;109(3):675-9. doi: 10.1073/pnas.1109011108. Epub 2011 Dec 30.
3
Maximizing the field of view and accuracy in 3D Single Molecule Localization Microscopy.
Opt Express. 2018 Feb 19;26(4):4631-4637. doi: 10.1364/OE.26.004631.
4
Axial accuracy in localization microscopy with 3D point spread function engineering.
Opt Express. 2022 Aug 1;30(16):28290-28300. doi: 10.1364/OE.461750.
7
Optimal sampling rate for 3D single molecule localization.
Opt Express. 2023 Nov 20;31(24):39703-39716. doi: 10.1364/OE.505859.
8
ZIMFLUX: Single molecule localization microscopy with patterned illumination in 3D.
Opt Express. 2023 Dec 4;31(25):42701-42722. doi: 10.1364/OE.505958.
10
Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function.
Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):2995-9. doi: 10.1073/pnas.0900245106. Epub 2009 Feb 11.

引用本文的文献

1
Interferometric Ultra-High Resolution 3D Imaging through Brain Sections.
bioRxiv. 2025 Feb 6:2025.02.03.636258. doi: 10.1101/2025.02.03.636258.
2
Deep-blur: Blind identification and deblurring with convolutional neural networks.
Biol Imaging. 2024 Nov 15;4:e13. doi: 10.1017/S2633903X24000096. eCollection 2024.
3
Improved localization precision via restricting confined biomolecule stochastic motion in single-molecule localization microscopy.
Nanophotonics. 2021 Nov 16;11(1):53-65. doi: 10.1515/nanoph-2021-0481. eCollection 2022 Jan.
5
Image restoration model for microscopic defocused images based on blurring kernel guidance.
Heliyon. 2024 Aug 10;10(16):e36151. doi: 10.1016/j.heliyon.2024.e36151. eCollection 2024 Aug 30.
6
Traceable localization enables accurate integration of quantum emitters and photonic structures with high yield.
Opt Quantum. 2024 Apr 25;2(2):72-84. doi: 10.1364/opticaq.502464. Epub 2024 Mar 18.
7
Large-FOV 3D localization microscopy by spatially variant point spread function generation.
Sci Adv. 2024 Mar 8;10(10):eadj3656. doi: 10.1126/sciadv.adj3656.
8
Multiplexed and Millimeter-Scale Fluorescence Nanoscopy of Cells and Tissue Sections via Prism-Illumination and Microfluidics-Enhanced DNA-PAINT.
Chem Biomed Imaging. 2023 Oct 12;1(9):817-830. doi: 10.1021/cbmi.3c00060. eCollection 2023 Dec 25.
9
Evaluating the resolution of conventional optical microscopes through point spread function measurement.
iScience. 2023 Sep 21;26(10):107976. doi: 10.1016/j.isci.2023.107976. eCollection 2023 Oct 20.
10
Three-dimensional modelling of blur property for conventional optical microscopes.
Heliyon. 2023 Jul 2;9(7):e17869. doi: 10.1016/j.heliyon.2023.e17869. eCollection 2023 Jul.

本文引用的文献

1
Adaptive optics stochastic optical reconstruction microscopy (AO-STORM) using a genetic algorithm.
Opt Express. 2015 May 18;23(10):13677-92. doi: 10.1364/OE.23.013677.
2
Isotropic 3D Super-resolution Imaging with a Self-bending Point Spread Function.
Nat Photonics. 2014;8:302-306. doi: 10.1038/nphoton.2014.13.
3
Optimal point spread function design for 3D imaging.
Phys Rev Lett. 2014 Sep 26;113(13):133902. doi: 10.1103/PhysRevLett.113.133902.
4
Tracking single molecules at work in living cells.
Nat Chem Biol. 2014 Jul;10(7):524-32. doi: 10.1038/nchembio.1558.
6
Extending single-molecule microscopy using optical Fourier processing.
J Phys Chem B. 2014 Jul 17;118(28):8313-29. doi: 10.1021/jp501778z. Epub 2014 May 12.
7
Cryogenic colocalization microscopy for nanometer-distance measurements.
Chemphyschem. 2014 Mar 17;15(4):763-70. doi: 10.1002/cphc.201301080.
8
Fluorophore localization algorithms for super-resolution microscopy.
Nat Methods. 2014 Mar;11(3):267-79. doi: 10.1038/nmeth.2844.
9
Precisely and accurately localizing single emitters in fluorescence microscopy.
Nat Methods. 2014 Mar;11(3):253-66. doi: 10.1038/nmeth.2843.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验