Suppr超能文献

基于创新组织工程技术构建理想瘢痕模型的研究进展

[Research advances on the construction of an ideal scar model based on innovative tissue engineering technology].

作者信息

Zhu D Z, Yao B, Yan Z Q, Huang S, Fu Xiaobing

机构信息

Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, the PLA General Hospital, Beijing 100048, China.

Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.

出版信息

Zhonghua Shao Shang Yu Chuang Mian Xiu Fu Za Zhi. 2022 Oct 20;38(10):983-988. doi: 10.3760/cma.j.cn501120-20210723-00257.

Abstract

The scar brings a huge economic burden and creates a serious psychological shadow for patients. Although the current methods for scar treatment tend to be diversified, the treatment method that can truly achieve the goal of "perfect healing" or "scarless healing" after human skin injury is quite scarce. With the wide application of tissue engineering technologies in medicine research, technologies such as three-dimensional bioprinting, organoid culture, and organ chip technologies are constantly emerging. Disease models based on these innovative technologies showed more advantages than traditional animal disease models. The article introduces the current hotspot technologies in skin tissue engineering such as organoid culture, three-dimensional bioprinting, and organ chip technologies, focuses on summarizing the three key elements to be mastered for constructing an ideal scar model , and puts forward the future prospect of constructing an ideal scar model based on our research team's long-term experience in skin tissue repair and regeneration research.

摘要

瘢痕给患者带来了巨大的经济负担,并给他们造成了严重的心理阴影。尽管目前瘢痕治疗方法趋于多样化,但人类皮肤损伤后真正能达到“完美愈合”或“无瘢痕愈合”目标的治疗方法却相当稀缺。随着组织工程技术在医学研究中的广泛应用,三维生物打印、类器官培养和器官芯片技术等不断涌现。基于这些创新技术的疾病模型比传统动物疾病模型显示出更多优势。本文介绍了类器官培养、三维生物打印和器官芯片技术等皮肤组织工程领域的当前热点技术,着重总结构建理想瘢痕模型需掌握的三个关键要素,并基于我们研究团队在皮肤组织修复与再生研究方面的长期经验,提出构建理想瘢痕模型的未来展望。

相似文献

1
[Research advances on the construction of an ideal scar model based on innovative tissue engineering technology].
Zhonghua Shao Shang Yu Chuang Mian Xiu Fu Za Zhi. 2022 Oct 20;38(10):983-988. doi: 10.3760/cma.j.cn501120-20210723-00257.
2
A review of biomacromolecule-based 3D bioprinting strategies for structure-function integrated repair of skin tissues.
Int J Biol Macromol. 2024 May;268(Pt 2):131623. doi: 10.1016/j.ijbiomac.2024.131623. Epub 2024 Apr 19.
3
[Thinking and prospect of scar reconstruction].
Zhonghua Shao Shang Yu Chuang Mian Xiu Fu Za Zhi. 2023 Sep 20;39(9):801-805. doi: 10.3760/cma.j.cn501225-20230504-00153.
4
3D bioprinting technology and equipment based on microvalve control.
Biotechnol Bioeng. 2024 Dec;121(12):3768-3781. doi: 10.1002/bit.28850. Epub 2024 Sep 17.
5
Utilization of 3D bioprinting technology in creating human tissue and organoid models for preclinical drug research - State-of-the-art.
Int J Pharm. 2023 Sep 25;644:123313. doi: 10.1016/j.ijpharm.2023.123313. Epub 2023 Aug 12.
6
Emerging and innovative approaches for wound healing and skin regeneration: Current status and advances.
Biomaterials. 2019 Sep;216:119267. doi: 10.1016/j.biomaterials.2019.119267. Epub 2019 Jun 13.
9
10
3D and 4D Bioprinting Technologies: A Game Changer for the Biomedical Sector?
Ann Biomed Eng. 2023 Aug;51(8):1683-1712. doi: 10.1007/s10439-023-03243-9. Epub 2023 Jun 1.

本文引用的文献

1
[Research advances on the characteristics of fibroblast in keloid].
Zhonghua Shao Shang Yu Chuang Mian Xiu Fu Za Zhi. 2022 Jun 20;38(6):590-594. doi: 10.3760/cma.j.cn501120-20210510-00176.
2
Modeling human hypertrophic scars with 3D preformed cellular aggregates bioprinting.
Bioact Mater. 2021 Sep 8;10:247-254. doi: 10.1016/j.bioactmat.2021.09.004. eCollection 2022 Apr.
3
Bioactive nanoparticle reinforced alginate/gelatin bioink for the maintenance of stem cell stemness.
Mater Sci Eng C Mater Biol Appl. 2021 Jul;126:112193. doi: 10.1016/j.msec.2021.112193. Epub 2021 May 19.
4
Cross-tissue organization of the fibroblast lineage.
Nature. 2021 May;593(7860):575-579. doi: 10.1038/s41586-021-03549-5. Epub 2021 May 12.
5
Preventing activation in fibroblasts yields wound regeneration without scarring.
Science. 2021 Apr 23;372(6540). doi: 10.1126/science.aba2374.
7
ECM-regulation of autophagy: The yin and the yang of autophagy during wound healing.
Matrix Biol. 2021 Jun;100-101:197-206. doi: 10.1016/j.matbio.2020.12.006. Epub 2021 Jan 6.
8
The Roles of Inflammation in Keloid and Hypertrophic Scars.
Front Immunol. 2020 Dec 4;11:603187. doi: 10.3389/fimmu.2020.603187. eCollection 2020.
9
Rethinking organoid technology through bioengineering.
Nat Mater. 2021 Feb;20(2):145-155. doi: 10.1038/s41563-020-00804-4. Epub 2020 Nov 16.
10
Rapid printing of bio-inspired 3D tissue constructs for skin regeneration.
Biomaterials. 2020 Nov;258:120287. doi: 10.1016/j.biomaterials.2020.120287. Epub 2020 Aug 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验