Suppr超能文献

利用日本最大的全国 ICU 数据库开发、验证和提取深度学习模型预测院内死亡率的特征:透明临床人工智能 (cAI) 开发的验证框架。

Development, validation, and feature extraction of a deep learning model predicting in-hospital mortality using Japan's largest national ICU database: a validation framework for transparent clinical Artificial Intelligence (cAI) development.

机构信息

Department of Global Health Promotion, Tokyo Medical and Dental University, Tokyo, Japan.

Department of Medical Education Research and Development, Tokyo Medical and Dental University, Tokyo, Japan.

出版信息

Anaesth Crit Care Pain Med. 2023 Apr;42(2):101167. doi: 10.1016/j.accpm.2022.101167. Epub 2022 Oct 24.

Abstract

OBJECTIVE

While clinical Artificial Intelligence (cAI) mortality prediction models and relevant studies have increased, limitations including the lack of external validation studies and inadequate model calibration leading to decreased overall accuracy have been observed. To combat this, we developed and evaluated a novel deep neural network (DNN) and a validation framework to promote transparent cAI development.

METHODS

Data from Japan's largest ICU database was used to develop the DNN model, predicting in-hospital mortality including ICU and post-ICU mortality by days since ICU discharge. The most important variables to the model were extracted with SHapley Additive exPlanations (SHAP) to examine the DNN's efficacy as well as develop models that were also externally validated.

MAIN RESULTS

The area under the receiver operating characteristic curve (AUC) for predicting ICU mortality was 0.94 [0.93-0.95], and 0.91 [0.90-0.92] for in-hospital mortality, ranging between 0.91-0.95 throughout one year since ICU discharge. An external validation using only the top 20 variables resulted with higher AUCs than traditional severity scores.

CONCLUSIONS

Our DNN model consistently generated AUCs between 0.91-0.95 regardless of days since ICU discharge. The 20 most important variables to our DNN, also generated higher AUCs than traditional severity scores regardless of days since ICU discharge. To our knowledge, this is the first study that predicts ICU and in-hospital mortality using cAI by post-ICU discharge days up to over a year. This finding could contribute to increased transparency on cAI applications.

摘要

目的

虽然临床人工智能(cAI)死亡率预测模型及其相关研究有所增加,但观察到存在一些局限性,包括缺乏外部验证研究以及模型校准不足导致整体准确性降低。为了解决这个问题,我们开发并评估了一种新的深度神经网络(DNN)和验证框架,以促进透明的 cAI 开发。

方法

使用来自日本最大的 ICU 数据库的数据来开发 DNN 模型,预测包括 ICU 内和 ICU 后死亡率在内的住院死亡率,按 ICU 出院后天数进行预测。使用 Shapley 加法解释(SHAP)提取对模型最重要的变量,以检查 DNN 的功效并开发也进行外部验证的模型。

主要结果

预测 ICU 死亡率的受试者工作特征曲线下面积(AUC)为 0.94 [0.93-0.95],住院死亡率为 0.91 [0.90-0.92],从 ICU 出院后一年的范围在 0.91-0.95 之间。仅使用前 20 个变量进行的外部验证得出的 AUC 高于传统严重程度评分。

结论

我们的 DNN 模型在 ICU 出院后的任何一天,AUC 均在 0.91-0.95 之间。对我们的 DNN 最重要的 20 个变量,无论 ICU 出院后多少天,AUC 也高于传统严重程度评分。据我们所知,这是第一项使用 cAI 预测 ICU 和住院死亡率的研究,直至超过一年的 ICU 出院后天数。这一发现可能有助于提高 cAI 应用的透明度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验