Suppr超能文献

AutoScanJ:一套用于智能显微镜的ImageJ脚本。

AutoScanJ: A Suite of ImageJ Scripts for Intelligent Microscopy.

作者信息

Tosi Sébastien, Lladó Anna, Bardia Lídia, Rebollo Elena, Godo Anna, Stockinger Petra, Colombelli Julien

机构信息

Institute for Research in Biomedicine, IRB Barcelona, Barcelona Institute of Science and Technology, BIST, Barcelona, Spain.

Molecular Imaging Platform, Molecular Biology institute of Barcelona IBMB-CSIC, Barcelona, Spain.

出版信息

Front Bioinform. 2021 Mar 18;1:627626. doi: 10.3389/fbinf.2021.627626. eCollection 2021.

Abstract

We developed AutoscanJ, a suite of ImageJ scripts enabling to image targets of interest by automatically driving a motorized microscope at the corresponding locations. For live samples, our software can sequentially detect biological events from their onset and further image them at high resolution, an action that would be impractical by user operation. For fixed samples, the software can dramatically reduce the amount of data acquired and the acquisition duration in situations where statistically few targets of interest are observed per field of view. AutoScanJ is compatible with motorized fluorescence microscopes controlled by Leica LAS AF/X or Micro-Manager. The software is straightforward to set up and new custom image analysis workflows to detect targets of interest can be simply implemented and shared with minimal efforts as independent ImageJ macro functions. We illustrate five different application scenarios with the system ranging from samples fixed on micropatterned surfaces to live cells undergoing several rounds of division. The target detection functions for these applications are provided and can be used as a starting point and a source of inspiration for new applications. Overall, AutoScanJ helps to optimize microscope usage by autonomous operation, and it opens up new experimental avenues by enabling the real-time detection and selective imaging of transient events in live microscopy.

摘要

我们开发了AutoscanJ,这是一套ImageJ脚本,能够通过在相应位置自动驱动电动显微镜来对感兴趣的目标进行成像。对于活样本,我们的软件可以从生物事件开始时就对其进行连续检测,并以高分辨率对其进一步成像,而这一操作若由用户手动进行则不切实际。对于固定样本,在每个视野中统计观察到的感兴趣目标较少的情况下,该软件可以显著减少采集的数据量和采集持续时间。AutoScanJ与由徕卡LAS AF/X或Micro-Manager控制的电动荧光显微镜兼容。该软件易于设置,并且可以轻松地将用于检测感兴趣目标的新的自定义图像分析工作流程作为独立的ImageJ宏函数来实现和共享。我们用该系统展示了五种不同的应用场景,从固定在微图案表面的样本到经历多轮分裂的活细胞。文中提供了这些应用的目标检测功能,可作为新应用的起点和灵感来源。总体而言,AutoScanJ通过自主操作有助于优化显微镜的使用,并通过在活细胞显微镜中实现对瞬态事件的实时检测和选择性成像开辟了新的实验途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e69a/9581036/062d901c8f50/fbinf-01-627626-g001.jpg

相似文献

1
AutoScanJ: A Suite of ImageJ Scripts for Intelligent Microscopy.
Front Bioinform. 2021 Mar 18;1:627626. doi: 10.3389/fbinf.2021.627626. eCollection 2021.
2
Integration of the ImageJ Ecosystem in the KNIME Analytics Platform.
Front Comput Sci. 2020 Mar;2. doi: 10.3389/fcomp.2020.00008. Epub 2020 Mar 17.
4
Easing batch image processing from OMERO: a new toolbox for ImageJ.
F1000Res. 2022 Apr 5;11:392. doi: 10.12688/f1000research.110385.2. eCollection 2022.
5
ImageJ for Partially and Fully Automated Analysis of Trypanosome Micrographs.
Methods Mol Biol. 2020;2116:385-408. doi: 10.1007/978-1-0716-0294-2_24.
6
A workflow for 3D-CLEM investigating liver tissue.
J Microsc. 2021 Mar;281(3):231-242. doi: 10.1111/jmi.12967. Epub 2020 Oct 27.
7
High-resolution cost-effective compact portable inverted light microscope.
J Microsc. 2019 Mar;273(3):199-209. doi: 10.1111/jmi.12775. Epub 2018 Dec 17.
8
Acquisition speed comparison of microscope software programs.
Microsc Res Tech. 2011 Jun;74(6):539-45. doi: 10.1002/jemt.20944. Epub 2010 Nov 17.
9
Advanced methods of microscope control using μManager software.
J Biol Methods. 2014;1(2). doi: 10.14440/jbm.2014.36.
10
Quantitating the cell: turning images into numbers with ImageJ.
Wiley Interdiscip Rev Dev Biol. 2017 Mar;6(2). doi: 10.1002/wdev.260. Epub 2016 Dec 2.

引用本文的文献

2
Light-sheets and smart microscopy, an exciting future is dawning.
Commun Biol. 2023 May 9;6(1):502. doi: 10.1038/s42003-023-04857-4.
3
Data-driven microscopy allows for automated context-specific acquisition of high-fidelity image data.
Cell Rep Methods. 2023 Mar 6;3(3):100419. doi: 10.1016/j.crmeth.2023.100419. eCollection 2023 Mar 27.
4
An open-source microscopy framework for simultaneous control of image acquisition, reconstruction, and analysis.
HardwareX. 2023 Feb 6;13:e00400. doi: 10.1016/j.ohx.2023.e00400. eCollection 2023 Mar.
5
CLEMSite, a software for automated phenotypic screens using light microscopy and FIB-SEM.
J Cell Biol. 2023 Mar 6;222(3). doi: 10.1083/jcb.202209127. Epub 2022 Dec 23.
6
Event-triggered STED imaging.
Nat Methods. 2022 Oct;19(10):1268-1275. doi: 10.1038/s41592-022-01588-y. Epub 2022 Sep 8.

本文引用的文献

1
ilastik: interactive machine learning for (bio)image analysis.
Nat Methods. 2019 Dec;16(12):1226-1232. doi: 10.1038/s41592-019-0582-9. Epub 2019 Sep 30.
2
Automating multimodal microscopy with NanoJ-Fluidics.
Nat Commun. 2019 Mar 15;10(1):1223. doi: 10.1038/s41467-019-09231-9.
3
CellProfiler 3.0: Next-generation image processing for biology.
PLoS Biol. 2018 Jul 3;16(7):e2005970. doi: 10.1371/journal.pbio.2005970. eCollection 2018 Jul.
4
OpenHiCAMM: High-Content Screening Software for Complex Microscope Imaging Workflows.
iScience. 2018 Apr 27;2:136-140. doi: 10.1016/j.isci.2018.03.017.
5
Micro-Magellan: open-source, sample-adaptive, acquisition software for optical microscopy.
Nat Methods. 2016 Sep 29;13(10):807-809. doi: 10.1038/nmeth.3991.
7
Adaptive fluorescence microscopy by online feedback image analysis.
Methods Cell Biol. 2014;123:489-503. doi: 10.1016/B978-0-12-420138-5.00026-4.
8
NIH Image to ImageJ: 25 years of image analysis.
Nat Methods. 2012 Jul;9(7):671-5. doi: 10.1038/nmeth.2089.
9
Icy: an open bioimage informatics platform for extended reproducible research.
Nat Methods. 2012 Jun 28;9(7):690-6. doi: 10.1038/nmeth.2075.
10
Automated feature detection and imaging for high-resolution screening of zebrafish embryos.
Biotechniques. 2011 May;50(5):319-24. doi: 10.2144/000113669.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验