Suppr超能文献

在超声引导下的脑肿瘤切除术中,使用连体神经网络进行基于稳健地标的脑移位校正。

Robust landmark-based brain shift correction with a Siamese neural network in ultrasound-guided brain tumor resection.

作者信息

Pirhadi Amir, Salari Soorena, Ahmad M Omair, Rivaz Hassan, Xiao Yiming

机构信息

Department of Electrical and Computer Engineering, Concordia University, Montreal, Canada.

Department of Computer Science and Software Engineering, Concordia University, Montreal, Canada.

出版信息

Int J Comput Assist Radiol Surg. 2023 Mar;18(3):501-508. doi: 10.1007/s11548-022-02770-5. Epub 2022 Oct 28.

Abstract

PURPOSE

In brain tumor surgery, tissue shift (called brain shift) can move the surgical target and invalidate the surgical plan. A cost-effective and flexible tool, intra-operative ultrasound (iUS) with robust image registration algorithms can effectively track brain shift to ensure surgical outcomes and safety.

METHODS

We proposed to employ a Siamese neural network, which was first trained using natural images and fine-tuned with domain-specific data to automatically detect matching anatomical landmarks in iUS scans at different surgical stages. An efficient 2.5D approach and an iterative re-weighted least squares algorithm are utilized to perform landmark-based registration for brain shift correction. The proposed method is validated and compared against the state-of-the-art methods using the public BITE and RESECT datasets.

RESULTS

Registration of pre-resection iUS scans to during- and post-resection iUS images were executed. The results with the proposed method shows a significant improvement from the initial misalignment ([Formula: see text]) and the method is comparable to the state-of-the-art methods validated on the same datasets.

CONCLUSIONS

We have proposed a robust technique to efficiently detect matching landmarks in iUS and perform brain shift correction with excellent performance. It has the potential to improve the accuracy and safety of neurosurgery.

摘要

目的

在脑肿瘤手术中,组织移位(称为脑移位)会移动手术靶点并使手术计划无效。术中超声(iUS)作为一种经济高效且灵活的工具,结合强大的图像配准算法,能够有效跟踪脑移位,以确保手术效果和安全性。

方法

我们提议采用暹罗神经网络,该网络首先使用自然图像进行训练,然后使用特定领域的数据进行微调,以自动检测不同手术阶段iUS扫描中的匹配解剖标志点。利用一种高效的2.5D方法和迭代重新加权最小二乘算法进行基于标志点的配准,以校正脑移位。使用公开的BITE和RESECT数据集对所提出的方法进行验证,并与现有最先进的方法进行比较。

结果

执行了术前iUS扫描与术中和术后iUS图像的配准。所提出方法的结果显示,相较于初始错位([公式:见原文])有显著改善,并且该方法与在相同数据集上验证的现有最先进方法相当。

结论

我们提出了一种强大的技术,能够有效地在iUS中检测匹配的标志点,并以优异的性能进行脑移位校正。它有潜力提高神经外科手术的准确性和安全性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验