Pirhadi Amir, Salari Soorena, Ahmad M Omair, Rivaz Hassan, Xiao Yiming
Department of Electrical and Computer Engineering, Concordia University, Montreal, Canada.
Department of Computer Science and Software Engineering, Concordia University, Montreal, Canada.
Int J Comput Assist Radiol Surg. 2023 Mar;18(3):501-508. doi: 10.1007/s11548-022-02770-5. Epub 2022 Oct 28.
In brain tumor surgery, tissue shift (called brain shift) can move the surgical target and invalidate the surgical plan. A cost-effective and flexible tool, intra-operative ultrasound (iUS) with robust image registration algorithms can effectively track brain shift to ensure surgical outcomes and safety.
We proposed to employ a Siamese neural network, which was first trained using natural images and fine-tuned with domain-specific data to automatically detect matching anatomical landmarks in iUS scans at different surgical stages. An efficient 2.5D approach and an iterative re-weighted least squares algorithm are utilized to perform landmark-based registration for brain shift correction. The proposed method is validated and compared against the state-of-the-art methods using the public BITE and RESECT datasets.
Registration of pre-resection iUS scans to during- and post-resection iUS images were executed. The results with the proposed method shows a significant improvement from the initial misalignment ([Formula: see text]) and the method is comparable to the state-of-the-art methods validated on the same datasets.
We have proposed a robust technique to efficiently detect matching landmarks in iUS and perform brain shift correction with excellent performance. It has the potential to improve the accuracy and safety of neurosurgery.
在脑肿瘤手术中,组织移位(称为脑移位)会移动手术靶点并使手术计划无效。术中超声(iUS)作为一种经济高效且灵活的工具,结合强大的图像配准算法,能够有效跟踪脑移位,以确保手术效果和安全性。
我们提议采用暹罗神经网络,该网络首先使用自然图像进行训练,然后使用特定领域的数据进行微调,以自动检测不同手术阶段iUS扫描中的匹配解剖标志点。利用一种高效的2.5D方法和迭代重新加权最小二乘算法进行基于标志点的配准,以校正脑移位。使用公开的BITE和RESECT数据集对所提出的方法进行验证,并与现有最先进的方法进行比较。
执行了术前iUS扫描与术中和术后iUS图像的配准。所提出方法的结果显示,相较于初始错位([公式:见原文])有显著改善,并且该方法与在相同数据集上验证的现有最先进方法相当。
我们提出了一种强大的技术,能够有效地在iUS中检测匹配的标志点,并以优异的性能进行脑移位校正。它有潜力提高神经外科手术的准确性和安全性。