Suppr超能文献

利用解剖学先验知识和不确定性量化对患有年龄相关性黄斑变性(AMD)的视网膜光学相干断层扫描(OCT)中的布鲁赫膜进行分割

Segmentation of Bruch's Membrane in Retinal OCT With AMD Using Anatomical Priors and Uncertainty Quantification.

作者信息

Fazekas Botond, Lachinov Dmitrii, Aresta Guilherme, Mai Julia, Schmidt-Erfurth Ursula, Bogunovic Hrvoje

出版信息

IEEE J Biomed Health Inform. 2023 Jan;27(1):41-52. doi: 10.1109/JBHI.2022.3217962. Epub 2023 Jan 4.

Abstract

Bruch's membrane (BM) segmentation on optical coherence tomography (OCT) is a pivotal step for the diagnosis and follow-up of age-related macular degeneration (AMD), one of the leading causes of blindness in the developed world. Automated BM segmentation methods exist, but they usually do not account for the anatomical coherence of the results, neither provide feedback on the confidence of the prediction. These factors limit the applicability of these systems in real-world scenarios. With this in mind, we propose an end-to-end deep learning method for automated BM segmentation in AMD patients. An Attention U-Net is trained to output a probability density function of the BM position, while taking into account the natural curvature of the surface. Besides the surface position, the method also estimates an A-scan wise uncertainty measure of the segmentation output. Subsequently, the A-scans with high uncertainty are interpolated using thin plate splines (TPS). We tested our method with ablation studies on an internal dataset with 138 patients covering all three AMD stages, and achieved a mean absolute localization error of 4.10 μm. In addition, the proposed segmentation method was compared against the state-of-the-art methods and showed a superior performance on an external publicly available dataset from a different patient cohort and OCT device, demonstrating strong generalization ability.

摘要

在光学相干断层扫描(OCT)上对布鲁赫膜(BM)进行分割是年龄相关性黄斑变性(AMD)诊断和随访的关键步骤,AMD是发达国家致盲的主要原因之一。现有的自动BM分割方法,但它们通常没有考虑结果的解剖学连贯性,也没有提供关于预测置信度的反馈。这些因素限制了这些系统在实际场景中的适用性。考虑到这一点,我们提出了一种用于AMD患者自动BM分割的端到端深度学习方法。训练一个注意力U-Net以输出BM位置的概率密度函数,同时考虑表面的自然曲率。除了表面位置,该方法还估计分割输出的逐A扫描不确定性度量。随后,使用薄板样条(TPS)对具有高不确定性的A扫描进行插值。我们在一个包含138名涵盖所有三个AMD阶段患者的内部数据集上进行了消融研究来测试我们的方法,平均绝对定位误差为4.10μm。此外,将所提出的分割方法与当前最先进的方法进行了比较,在来自不同患者队列和OCT设备的外部公开可用数据集上表现出卓越的性能,证明了强大的泛化能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验