Sorscher Ben, Mel Gabriel C, Ocko Samuel A, Giocomo Lisa M, Ganguli Surya
Department of Applied Physics, Stanford University, Stanford, CA 94305, USA.
Neurosciences PhD Program, Stanford University, Stanford, CA 94305, USA.
Neuron. 2023 Jan 4;111(1):121-137.e13. doi: 10.1016/j.neuron.2022.10.003. Epub 2022 Oct 27.
The discovery of entorhinal grid cells has generated considerable interest in how and why hexagonal firing fields might emerge in a generic manner from neural circuits, and what their computational significance might be. Here, we forge a link between the problem of path integration and the existence of hexagonal grids, by demonstrating that such grids arise in neural networks trained to path integrate under simple biologically plausible constraints. Moreover, we develop a unifying theory for why hexagonal grids are ubiquitous in path-integrator circuits. Such trained networks also yield powerful mechanistic hypotheses, exhibiting realistic levels of biological variability not captured by hand-designed models. We furthermore develop methods to analyze the connectome and activity maps of our networks to elucidate fundamental mechanisms underlying path integration. These methods provide a road map to go from connectomic and physiological measurements to conceptual understanding in a manner that could generalize to other settings.
内嗅网格细胞的发现引发了人们对六边形放电场如何以及为何可能以一种通用方式从神经回路中出现,以及它们的计算意义可能是什么的浓厚兴趣。在这里,我们通过证明在简单生物学上合理的约束条件下训练进行路径积分的神经网络中会出现这样的网格,从而在路径积分问题和六边形网格的存在之间建立了联系。此外,我们提出了一个统一的理论,解释了为什么六边形网格在路径积分器电路中普遍存在。这样训练的网络还产生了强大的机制假设,展现出手工设计模型所无法捕捉的现实水平的生物变异性。我们还进一步开发了分析网络连接组和活动图的方法,以阐明路径积分背后的基本机制。这些方法提供了一个路线图,能够以一种可推广到其他情况的方式,从连接组和生理学测量走向概念性理解。