Suppr超能文献

基于机器学习和卷积神经网络的皮肤镜图像皮损分类。

Skin lesion classification of dermoscopic images using machine learning and convolutional neural network.

机构信息

Department of Computer Science and Engineering, Government Polytechnic for Women, Mangaluru, 575008, India.

Department of Computer Science and Engineering, NMAM Institute of Technology-Affiliated to NITTE (Deemed to be University), Udupi, 574110, India.

出版信息

Sci Rep. 2022 Oct 28;12(1):18134. doi: 10.1038/s41598-022-22644-9.

Abstract

Detecting dangerous illnesses connected to the skin organ, particularly malignancy, requires the identification of pigmented skin lesions. Image detection techniques and computer classification capabilities can boost skin cancer detection accuracy. The dataset used for this research work is based on the HAM10000 dataset which consists of 10015 images. The proposed work has chosen a subset of the dataset and performed augmentation. A model with data augmentation tends to learn more distinguishing characteristics and features rather than a model without data augmentation. Involving data augmentation can improve the accuracy of the model. But that model cannot give significant results with the testing data until it is robust. The k-fold cross-validation technique makes the model robust which has been implemented in the proposed work. We have analyzed the classification accuracy of the Machine Learning algorithms and Convolutional Neural Network models. We have concluded that Convolutional Neural Network provides better accuracy compared to other machine learning algorithms implemented in the proposed work. In the proposed system, as the highest, we obtained an accuracy of 95.18% with the CNN model. The proposed work helps early identification of seven classes of skin disease and can be validated and treated appropriately by medical practitioners.

摘要

检测与皮肤器官相关的危险疾病,特别是恶性肿瘤,需要识别色素性皮肤病变。图像检测技术和计算机分类能力可以提高皮肤癌检测的准确性。本研究工作使用的数据集基于 HAM10000 数据集,其中包含 10015 张图像。本研究选择了数据集的一个子集并进行了扩充。与没有数据扩充的模型相比,具有数据扩充的模型更倾向于学习更多有区别的特征和特点。引入数据扩充可以提高模型的准确性。但是,模型在具有鲁棒性之前,不能用测试数据得到显著的结果。k 折交叉验证技术使模型具有鲁棒性,本研究中已经实现了该技术。我们分析了机器学习算法和卷积神经网络模型的分类准确性。我们得出的结论是,与本研究中实现的其他机器学习算法相比,卷积神经网络提供了更高的准确性。在提出的系统中,我们使用 CNN 模型获得了最高 95.18%的准确率。该研究有助于早期识别七种皮肤疾病,并由医疗从业者进行适当的验证和治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07ca/9616944/81bdc3967d75/41598_2022_22644_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验