Suppr超能文献

基于深度学习的全局平均池化改进的皮肤损伤多分类。

Deep Learning-Based Skin Lesion Multi-class Classification with Global Average Pooling Improvement.

机构信息

School of Mechanical Engineering, SASTRA Deemed to be University, 613401, Thanjavur, India.

School of Electrical and Electronics Engineering, SASTRA Deemed to be University, 613401, Thanjavur, India.

出版信息

J Digit Imaging. 2023 Oct;36(5):2227-2248. doi: 10.1007/s10278-023-00862-5. Epub 2023 Jul 5.

Abstract

Cancerous skin lesions are one of the deadliest diseases that have the ability in spreading across other body parts and organs. Conventionally, visual inspection and biopsy methods are widely used to detect skin cancers. However, these methods have some drawbacks, and the prediction is not highly accurate. This is where a dependable automatic recognition system for skin cancers comes into play. With the extensive usage of deep learning in various aspects of medical health, a novel computer-aided dermatologist tool has been suggested for the accurate identification and classification of skin lesions by deploying a novel deep convolutional neural network (DCNN) model that incorporates global average pooling along with preprocessing to discern the skin lesions. The proposed model is trained and tested on the HAM10000 dataset, which contains seven different classes of skin lesions as target classes. The black hat filtering technique has been applied to remove artifacts in the preprocessing stage along with the resampling techniques to balance the data. The performance of the proposed model is evaluated by comparing it with some of the transfer learning models such as ResNet50, VGG-16, MobileNetV2, and DenseNet121. The proposed model provides an accuracy of 97.20%, which is the highest among the previous state-of-art models for multi-class skin lesion classification. The efficacy of the proposed model is also validated by visualizing the results obtained using a graphical user interface (GUI).

摘要

皮肤癌病变是一种极具致命性的疾病,它有能力扩散到身体的其他部位和器官。传统上,视觉检查和活检方法被广泛用于检测皮肤癌。然而,这些方法存在一些缺点,预测的准确性不高。这就是可靠的皮肤癌自动识别系统发挥作用的地方。随着深度学习在医疗健康各个方面的广泛应用,已经提出了一种新的计算机辅助皮肤科工具,通过部署一种新的包含全局平均池化的深度卷积神经网络 (DCNN) 模型来对皮肤病变进行准确的识别和分类,实现对皮肤病变的准确识别和分类。该模型在 HAM10000 数据集上进行训练和测试,该数据集包含七种不同类型的皮肤病变作为目标类别。在预处理阶段应用了黑帽滤波技术来去除伪影,并应用重采样技术来平衡数据。通过与 ResNet50、VGG-16、MobileNetV2 和 DenseNet121 等一些迁移学习模型进行比较,评估了所提出模型的性能。所提出的模型提供了 97.20%的准确率,在多类皮肤病变分类的最新技术中是最高的。还通过使用图形用户界面 (GUI) 可视化获得的结果来验证所提出模型的有效性。

相似文献

4
Deep attention branch networks for skin lesion classification.基于深度注意力分支网络的皮肤病变分类。
Comput Methods Programs Biomed. 2021 Nov;212:106447. doi: 10.1016/j.cmpb.2021.106447. Epub 2021 Oct 2.

本文引用的文献

3
Giant congenital melanocytic nevus.巨大先天性黑素细胞痣
An Bras Dermatol. 2013 Nov-Dec;88(6):863-78. doi: 10.1590/abd1806-4841.20132233.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验