Suppr超能文献

用于阿尔茨海默病检测的自动化机器学习管道的开发。

The development of an automated machine learning pipeline for the detection of Alzheimer's Disease.

机构信息

SynapseBio, New York, USA.

MINDig, 35000, Rennes, France.

出版信息

Sci Rep. 2022 Oct 28;12(1):18137. doi: 10.1038/s41598-022-22979-3.

Abstract

Although Alzheimer's disease is the most prevalent form of dementia, there are no treatments capable of slowing disease progression. A lack of reliable disease endpoints and/or biomarkers contributes in part to the absence of effective therapies. Using machine learning to analyze EEG offers a possible solution to overcome many of the limitations of current diagnostic modalities. Here we develop a logistic regression model with an accuracy of 81% that addresses many of the shortcomings of previous works. To our knowledge, no other study has been able to solve the following problems simultaneously: (1) a lack of automation and unbiased removal of artifacts, (2) a dependence on a high level of expertise in data pre-processing and ML for non-automated processes, (3) the need for very large sample sizes and accurate EEG source localization using high density systems, (4) and a reliance on black box ML approaches such as deep neural nets with unexplainable feature selection. This study presents a proof-of-concept for an automated and scalable technology that could potentially be used to diagnose AD in clinical settings as an adjunct to conventional neuropsychological testing, thus enhancing efficiency, reproducibility, and practicality of AD diagnosis.

摘要

虽然阿尔茨海默病是最常见的痴呆症形式,但目前还没有能够减缓疾病进展的治疗方法。缺乏可靠的疾病终点和/或生物标志物部分导致了缺乏有效治疗方法。使用机器学习分析 EEG 提供了一种可能的解决方案,可以克服当前诊断模式的许多限制。在这里,我们开发了一个准确率为 81%的逻辑回归模型,解决了之前许多工作的缺点。据我们所知,没有其他研究能够同时解决以下问题:(1)缺乏自动化和对伪影的无偏去除,(2)对数据预处理和非自动化过程的机器学习的高度专业知识的依赖,(3)对非常大数据量的需求以及使用高密度系统进行准确的 EEG 源定位,(4)以及对黑盒机器学习方法的依赖,例如具有不可解释特征选择的深度神经网络。本研究提出了一种自动化和可扩展技术的概念验证,该技术可能被用作临床环境中 AD 的辅助诊断方法,以常规神经心理学测试,从而提高 AD 诊断的效率、可重复性和实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda9/9616932/9ee6980e3cae/41598_2022_22979_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验