Kachare Pramod H, Sangle Sandeep B, Puri Digambar V, Khubrani Mousa Mohammed, Al-Shourbaji Ibrahim
Jazan University College of Engineering, Jazan, Saudi Arabia.
Department of Computer Science & Engineering, Ramrao Adik Institute of Technology, Navi Mumbai, India.
Cogn Neurodyn. 2024 Oct;18(5):3195-3208. doi: 10.1007/s11571-024-10153-6. Epub 2024 Jul 19.
Dementia is a neuro-degenerative disorder with a high death rate, mainly due to high human error, time, and cost of the current clinical diagnostic techniques. The existing dementia detection methods using hand-crafted electroencephalogram (EEG) signal features are unreliable. A convolution neural network using spatiotemporal EEG signals (STEADYNet) is presented to improve the dementia detection. The STEADYNet uses a multichannel temporal EEG signal as input. The network is grouped into feature extraction and classification components. The feature extraction comprises two convolution layers to generate complex features, a max-pooling layer to reduce the EEG signal's spatiotemporal redundancy, and a dropout layer to improve the network's generalization. The classification processes the feature extraction output nonlinearly using two fully-connected layers to generate salient features and a softmax layer to generate disease probabilities. Two publicly available multiclass datasets of dementia are used for evaluation. The STEADYNet outperforms existing automatic dementia detection methods with accuracies of , , and for Alzheimer's disease, mild cognitive impairment, and frontotemporal dementia, respectively. The STEADYNet has a low inference time and floating point operations, suitable for real-time applications. It may aid neurologists in efficient detection and treatment. A Python implementation of the STEADYNet is available at https://github.com/SandeepSangle12/STEADYNet.git.
痴呆症是一种死亡率很高的神经退行性疾病,主要原因是当前临床诊断技术存在较高的人为误差、时间成本和费用。现有的利用手工制作的脑电图(EEG)信号特征进行痴呆症检测的方法并不可靠。本文提出了一种使用时空脑电图信号的卷积神经网络(STEADYNet)来改善痴呆症检测。STEADYNet使用多通道时域脑电图信号作为输入。该网络分为特征提取和分类组件。特征提取包括两个卷积层以生成复杂特征、一个最大池化层以减少脑电图信号的时空冗余,以及一个随机失活层以提高网络的泛化能力。分类使用两个全连接层对特征提取输出进行非线性处理以生成显著特征,并使用一个softmax层生成疾病概率。使用两个公开可用的痴呆症多类数据集进行评估。STEADYNet在阿尔茨海默病、轻度认知障碍和额颞叶痴呆的检测中分别以 、 和 的准确率优于现有的自动痴呆症检测方法。STEADYNet具有较低的推理时间和浮点运算量,适用于实时应用。它可能有助于神经科医生进行高效的检测和治疗。STEADYNet的Python实现可在https://github.com/SandeepSangle12/STEADYNet.git获取。