Micro- and Nanoelectronic Systems, Institute of Micro and Nanotechnologies MacroNano, Technische Universität Ilmenau, Ilmenau, Germany.
Sci Rep. 2022 Oct 29;12(1):18266. doi: 10.1038/s41598-022-22907-5.
Redox-based memristive devices have shown great potential for application in neuromorphic computing systems. However, the demands on the device characteristics depend on the implemented computational scheme and unifying the desired properties in one stable device is still challenging. Understanding how and to what extend the device characteristics can be tuned and stabilized is crucial for developing application specific designs. Here, we present memristive devices with a functional trilayer of HfO/AlO/TiO tailored by the stoichiometry of HfO (x = 1.8, 2) and the operating conditions. The device properties are experimentally analyzed, and a physics-based device model is developed to provide a microscopic interpretation and explain the role of the AlO layer for a stable performance. Our results demonstrate that the resistive switching mechanism can be tuned from area type to filament type in the same device, which is well explained by the model: the AlO layer stabilizes the area-type switching mechanism by controlling the formation of oxygen vacancies at the AlO/HfO interface with an estimated formation energy of ≈ 1.65 ± 0.05 eV. Such stabilized area-type devices combine multi-level analog switching, linear resistance change, and long retention times (≈ 10-10 s) without external current compliance and initial electroforming cycles. This combination is a significant improvement compared to previous bilayer devices and makes the devices potentially interesting for future integration into memristive circuits for neuromorphic applications.
基于氧化还原的忆阻器在神经形态计算系统中有很大的应用潜力。然而,对器件特性的要求取决于所采用的计算方案,在一个稳定的器件中统一所需的特性仍然具有挑战性。了解如何以及在多大程度上可以调整和稳定器件特性对于开发特定应用的设计至关重要。在这里,我们提出了一种具有功能三层结构的忆阻器,其由 HfO/AlO/TiO 的化学计量比(x=1.8,2)和工作条件来定制。对器件特性进行了实验分析,并开发了一个基于物理的器件模型,以提供微观解释并解释 AlO 层对于稳定性能的作用。我们的结果表明,在同一器件中,可以从体电阻开关机制调整为细丝电阻开关机制,这很好地解释了模型:AlO 层通过控制 AlO/HfO 界面处氧空位的形成来稳定体电阻开关机制,其形成能约为 ≈1.65±0.05 eV。这种稳定的体电阻开关机制的器件结合了多电平模拟开关、线性电阻变化和长保持时间(≈10-10 s),而无需外部电流限制和初始电形成循环。与之前的双层器件相比,这种组合有了显著的改进,使得这些器件在未来有望集成到用于神经形态应用的忆阻器电路中。