Center of Statistical Research, School of Statistics, Southwestern University of Finance and Economics, Chengdu, Sichuan, China.
Centre for Quantitative Medicine, Health Services & Systems Research, Duke-NUS Medical School, Singapore, Singapore.
Nat Commun. 2022 Oct 30;13(1):6490. doi: 10.1038/s41467-022-34164-1.
Mendelian randomization (MR) harnesses genetic variants as instrumental variables (IVs) to study the causal effect of exposure on outcome using summary statistics from genome-wide association studies. Classic MR assumptions are violated when IVs are associated with unmeasured confounders, i.e., when correlated horizontal pleiotropy (CHP) arises. Such confounders could be a shared gene or inter-connected pathways underlying exposure and outcome. We propose MR-CUE (MR with Correlated horizontal pleiotropy Unraveling shared Etiology and confounding), for estimating causal effect while identifying IVs with CHP and accounting for estimation uncertainty. For those IVs, we map their cis-associated genes and enriched pathways to inform shared genetic etiology underlying exposure and outcome. We apply MR-CUE to study the effects of interleukin 6 on multiple traits/diseases and identify several S100 genes involved in shared genetic etiology. We assess the effects of multiple exposures on type 2 diabetes across European and East Asian populations.
孟德尔随机化(MR)利用遗传变异作为工具变量(IVs),利用全基因组关联研究的汇总统计数据来研究暴露对结果的因果效应。当 IVs 与未测量的混杂因素相关时,即当存在相关水平的多效性(CHP)时,经典的 MR 假设就会被违反。这些混杂因素可能是暴露和结果背后的共同基因或相互关联的途径。我们提出了 MR-CUE(具有相关水平多效性的 MR 揭示共同病因和混杂),用于在识别具有 CHP 的 IVs 并考虑估计不确定性的同时估计因果效应。对于这些 IVs,我们将它们的顺式相关基因和富集途径映射到暴露和结果背后的共同遗传病因中。我们应用 MR-CUE 来研究白细胞介素 6 对多种特征/疾病的影响,并确定了几个参与共同遗传病因的 S100 基因。我们评估了多种暴露对欧洲和东亚人群 2 型糖尿病的影响。