文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

心脏瓣膜的蛋白质组学和代谢组学综合分析揭示了钙化性主动脉瓣疾病的分子机制和靶点。

Integrated proteomic and metabolomic profile analyses of cardiac valves revealed molecular mechanisms and targets in calcific aortic valve disease.

作者信息

Fu Bo, Wang Jing, Wang Lianqun, Wang Qiang, Guo Zhigang, Xu Meilin, Jiang Nan

机构信息

Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin, China.

Postdoctoral Mobile Station, Tianjin Medical University, Tianjin, China.

出版信息

Front Cardiovasc Med. 2022 Oct 13;9:944521. doi: 10.3389/fcvm.2022.944521. eCollection 2022.


DOI:10.3389/fcvm.2022.944521
PMID:36312243
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9606238/
Abstract

BACKGROUND: This study aimed to define changes in the metabolic and protein profiles of patients with calcific aortic valve disease (CAVD). METHODS AND RESULTS: We analyzed cardiac valve samples of patients with and without (control) CAVD ( = 24 per group) using untargeted metabolomics and tandem mass tag-based quantitative proteomics. Significantly different metabolites and proteins between the CAVD and control groups were screened; then, functional enrichment was analyzed. We analyzed co-expressed differential metabolites and proteins, and constructed a metabolite-protein-pathway network. The expression of key proteins was validated using western blotting. Differential analysis identified 229 metabolites in CAVD among which, 2-aminophenol, hydroxykynurenine, erythritol, carnosine, and choline were the top five. Proteomic analysis identified 549 differentially expressed proteins in CAVD, most of which were localized in the nuclear, cytoplasmic, extracellular, and plasma membranes. Levels of selenium binding protein 1 (SELENBP1) positively correlated with multiple metabolites. Adenosine triphosphate-binding cassette transporters, starch and sucrose metabolism, hypoxia-inducible factor 1 (HIF-1) signaling, and purine metabolism were key pathways in the network. Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), calcium/calmodulin-dependent protein kinase II delta (CAMK2D), and ATP binding cassette subfamily a member 8 (ABCA8) were identified as hub proteins in the metabolite-protein-pathway network as they interacted with ADP, glucose 6-phosphate, choline, and other proteins. Western blotting confirmed that ENPP1 was upregulated, whereas ABCA8 and CAMK2D were downregulated in CAVD samples. CONCLUSION: The metabolic and protein profiles of cardiac valves from patients with CAVD significantly changed. The present findings provide a holistic view of the molecular mechanisms underlying CAVD that may lead to the development of novel diagnostic biomarkers and therapeutic targets to treat CAVD.

摘要

背景:本研究旨在明确钙化性主动脉瓣疾病(CAVD)患者代谢和蛋白质谱的变化。 方法与结果:我们使用非靶向代谢组学和基于串联质量标签的定量蛋白质组学分析了患有和未患有(对照)CAVD的患者(每组24例)的心脏瓣膜样本。筛选出CAVD组与对照组之间存在显著差异的代谢物和蛋白质;然后,进行功能富集分析。我们分析了共表达的差异代谢物和蛋白质,并构建了代谢物-蛋白质-通路网络。使用蛋白质印迹法验证关键蛋白质的表达。差异分析在CAVD中鉴定出229种代谢物,其中2-氨基酚、羟基犬尿氨酸、赤藓糖醇、肌肽和胆碱位列前五。蛋白质组学分析在CAVD中鉴定出549种差异表达的蛋白质,其中大多数定位于细胞核、细胞质、细胞外和质膜。硒结合蛋白1(SELENBP1)的水平与多种代谢物呈正相关。三磷酸腺苷结合盒转运蛋白、淀粉和蔗糖代谢、缺氧诱导因子1(HIF-1)信号通路和嘌呤代谢是网络中的关键通路。外核苷酸焦磷酸酶/磷酸二酯酶1(ENPP1)、钙/钙调蛋白依赖性蛋白激酶IIδ(CAMK2D)和ATP结合盒亚家族A成员8(ABCA8)被确定为代谢物-蛋白质-通路网络中的枢纽蛋白,因为它们与二磷酸腺苷、6-磷酸葡萄糖、胆碱和其他蛋白质相互作用。蛋白质印迹法证实,CAVD样本中ENPP1上调,而ABCA8和CAMK2D下调。 结论:CAVD患者心脏瓣膜的代谢和蛋白质谱发生了显著变化。本研究结果提供了CAVD潜在分子机制的整体视图,这可能会促成新型诊断生物标志物和治疗靶点的开发,以治疗CAVD。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1b1/9606238/96076b765fa7/fcvm-09-944521-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1b1/9606238/7337232e8c04/fcvm-09-944521-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1b1/9606238/29924498cc19/fcvm-09-944521-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1b1/9606238/58110d667b9a/fcvm-09-944521-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1b1/9606238/a4faec5ba46d/fcvm-09-944521-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1b1/9606238/e20ebfc3fa5b/fcvm-09-944521-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1b1/9606238/b68804aa4ef4/fcvm-09-944521-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1b1/9606238/8b22043fc611/fcvm-09-944521-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1b1/9606238/96076b765fa7/fcvm-09-944521-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1b1/9606238/7337232e8c04/fcvm-09-944521-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1b1/9606238/29924498cc19/fcvm-09-944521-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1b1/9606238/58110d667b9a/fcvm-09-944521-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1b1/9606238/a4faec5ba46d/fcvm-09-944521-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1b1/9606238/e20ebfc3fa5b/fcvm-09-944521-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1b1/9606238/b68804aa4ef4/fcvm-09-944521-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1b1/9606238/8b22043fc611/fcvm-09-944521-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1b1/9606238/96076b765fa7/fcvm-09-944521-g008.jpg

相似文献

[1]
Integrated proteomic and metabolomic profile analyses of cardiac valves revealed molecular mechanisms and targets in calcific aortic valve disease.

Front Cardiovasc Med. 2022-10-13

[2]
Potential biomarkers and immune cell infiltration involved in aortic valve calcification identified through integrated bioinformatics analysis.

Front Physiol. 2022-12-15

[3]
Elevated expression of lipoprotein-associated phospholipase A2 in calcific aortic valve disease: implications for valve mineralization.

J Am Coll Cardiol. 2013-10-23

[4]
Potential ferroptosis key genes in calcific aortic valve disease.

Front Cardiovasc Med. 2022-8-8

[5]
Identifying hub genes of calcific aortic valve disease and revealing the immune infiltration landscape based on multiple WGCNA and single-cell sequence analysis.

Front Immunol. 2022

[6]
Screening of immune-related secretory proteins linking chronic kidney disease with calcific aortic valve disease based on comprehensive bioinformatics analysis and machine learning.

J Transl Med. 2023-6-1

[7]
Identification of key genes and pathways in calcific aortic valve disease by bioinformatics analysis.

J Thorac Dis. 2019-12

[8]
Investigation of autophagy‑related genes and immune infiltration in calcific aortic valve disease: A bioinformatics analysis and experimental validation.

Exp Ther Med. 2024-3-26

[9]
Andrographolide ameliorates aortic valve calcification by regulation of lipid biosynthesis and glycerolipid metabolism targeting MGLL expression in vitro and in vivo.

Cell Calcium. 2021-12

[10]
Identification of key genes involved in calcific aortic valve disease based on integrated bioinformatics analysis.

Exp Biol Med (Maywood). 2023-1

引用本文的文献

[1]
Selenium-Binding Protein 1-Deficient Dendritic Cells Protect Mice from Sepsis by Increased Treg/Th17.

Antioxidants (Basel). 2025-4-14

[2]
Ablation of Mouse Selenium-Binding Protein 1 and 2 Elevates LDL by Disruption of Cholesterol Efflux and Lipid Metabolism.

Int J Mol Sci. 2025-4-3

[3]
Lipoprotein(a) and Atrial Fibrillation: Mechanistic Insights and Therapeutic Approaches.

Int J Med Sci. 2025-1-1

[4]
Cathepsin D elevates the fibrocalcific activity in human aortic valve cells through the ERK1/2-Sox9 pathway.

Front Cardiovasc Med. 2024-9-24

[5]
Aortic Valve Embryology, Mechanobiology, and Second Messenger Pathways: Implications for Clinical Practice.

J Cardiovasc Dev Dis. 2024-2-1

[6]
Re-evaluation of erythritol (E 968) as a food additive.

EFSA J. 2023-12-20

[7]
Strategies for Development of Synthetic Heart Valve Tissue Engineering Scaffolds.

Prog Mater Sci. 2023-10

[8]
PI3K/AKT signaling activates HIF1α to modulate the biological effects of invasive breast cancer with microcalcification.

NPJ Breast Cancer. 2023-11-13

[9]
Hypoxia-inducible factor activation promotes osteogenic transition of valve interstitial cells and accelerates aortic valve calcification in a mice model of chronic kidney disease.

Front Cardiovasc Med. 2023-6-2

本文引用的文献

[1]
Proteomic mapping of atrial and ventricular heart tissue in patients with aortic valve stenosis.

Sci Rep. 2021-12-22

[2]
Tryptophan Catabolism and Inflammation: A Novel Therapeutic Target For Aortic Diseases.

Front Immunol. 2021

[3]
Aortic valve disease in diabetes: Molecular mechanisms and novel therapies.

J Cell Mol Med. 2021-10

[4]
Urinary Proteomics Identifying Novel Biomarkers for the Diagnosis and Phenotyping of Carotid Artery Stenosis.

Front Mol Biosci. 2021-8-10

[5]
Lipoprotein Proteomics and Aortic Valve Transcriptomics Identify Biological Pathways Linking Lipoprotein(a) Levels to Aortic Stenosis.

Metabolites. 2021-7-16

[6]
Trimethylamine N-oxide induces osteogenic responses in human aortic valve interstitial cells in vitro and aggravates aortic valve lesions in mice.

Cardiovasc Res. 2022-6-29

[7]
Angiotensin-converting enzyme inhibitor for post-transcatheter aortic valve implantation patients: study protocol for a multicenter randomized, open-label blinded endpoint control trial.

Trials. 2021-7-18

[8]
Global epidemiology of valvular heart disease.

Nat Rev Cardiol. 2021-12

[9]
Dyslipidaemias in stroke, chronic kidney disease, and aortic stenosis: the new frontiers for cholesterol lowering.

Eur Heart J. 2021-6-7

[10]
Ablation of Selenbp1 Alters Lipid Metabolism via the Pparα Pathway in Mouse Kidney.

Int J Mol Sci. 2021-5-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索