Suppr超能文献

基于机器学习算法的急性肾损伤特征基因识别与验证

Machine learning algorithm-based identification and verification of characteristic genes in acute kidney injury.

作者信息

Li Yinghao, Du Yiwei, Zhang Yanlong, Chen Chao, Zhang Jian, Zhang Xin, Zhang Min, Yan Yong

机构信息

Department of Urology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.

Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi'an, China.

出版信息

Front Med (Lausanne). 2022 Oct 13;9:1016459. doi: 10.3389/fmed.2022.1016459. eCollection 2022.

Abstract

BACKGROUND

Acute kidney injury is a common renal disease with high incidence and mortality. Early identification of high-risk acute renal injury patients following renal transplant could improve their prognosis, however, no biomarker exists for early detection.

METHODS

The GSE139061 dataset was used to identify hub genes in 86 DEGs between acute kidney injury and control samples using three machine learning algorithms (LASSO, random forest, and support vector machine-recursive feature elimination). We used GSEA to identify the related signal pathways of six hub genes. Finally, we validated these potential biomarkers in an hypoxia/reoxygenation injury cell model using RT-qPCR.

RESULTS

Six hub genes , and were identified as potentially predictive of an acute kidney injury. The expression of and were markedly increased in control samples, while , and were markedly increased in acute kidney injury samples.

CONCLUSION

We screened six hub genes related to acute kidney injury using three machine learning algorithms and identified genes with potential diagnostic utility. The hub genes identified in this study might play a significant role in the pathophysiology and progression of AKI. As such, they might be useful for the early diagnosis of AKI and provide the possibility of improving the prognosis of AKI patients.

摘要

背景

急性肾损伤是一种常见的肾脏疾病,发病率和死亡率都很高。早期识别肾移植后急性肾损伤的高危患者可以改善其预后,然而,目前尚无用于早期检测的生物标志物。

方法

使用GSE139061数据集,通过三种机器学习算法(LASSO、随机森林和支持向量机递归特征消除)在急性肾损伤样本和对照样本之间的86个差异表达基因(DEG)中识别枢纽基因。我们使用基因集富集分析(GSEA)来识别六个枢纽基因的相关信号通路。最后,我们使用逆转录定量聚合酶链反应(RT-qPCR)在缺氧/复氧损伤细胞模型中验证这些潜在的生物标志物。

结果

六个枢纽基因,和被确定为急性肾损伤的潜在预测指标。在对照样本中,和的表达显著增加,而在急性肾损伤样本中,和的表达显著增加。

结论

我们使用三种机器学习算法筛选出六个与急性肾损伤相关的枢纽基因,并鉴定出具有潜在诊断价值的基因。本研究中鉴定出的枢纽基因可能在急性肾损伤的病理生理学和进展中发挥重要作用。因此,它们可能有助于急性肾损伤的早期诊断,并为改善急性肾损伤患者的预后提供可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82e3/9606399/c6b06c8aa38e/fmed-09-1016459-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验