Suppr超能文献

五基因标志物预测早期肾移植患者的急性肾损伤。

Five-gene signature predicts acute kidney injury in early kidney transplant patients.

机构信息

Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua 321000, China.

出版信息

Aging (Albany NY). 2022 Mar 23;14(6):2628-2644. doi: 10.18632/aging.203962.

Abstract

Patients with acute kidney injury (AKI) show high morbidity and mortality, and a lack of effective biomarkers increases difficulty in its early detection. Weighted gene co-expression network analysis (WGCNA) detected a total of 22 gene modules and 6 miRNA modules, of which 4 gene modules and 3 miRNA modules were phenotypically co-related. Functional analysis revealed that these modules were related to different molecular pathways, which mainly involved PI3K-Akt signaling pathway and ECM-receptor interaction. The brown modules related to transplantation mainly involved immune-related pathways. Finally, five genes with the highest AUC were used to establish a diagnosis and prediction model of AKI. The model showed a high area under curve (AUC) in the training set and validation set, and their prediction accuracy for AKI was as high as 100%. Similarly, the prediction accuracy of AKI after 24 h in the 0 h transplant sample was 100%. This study may provide new features for the diagnosis and prediction of AKI after kidney transplantation, and facilitate the diagnosis and drug development of AKI in kidney transplant patients.

摘要

急性肾损伤(AKI)患者的发病率和死亡率均较高,且缺乏有效的生物标志物增加了其早期检测的难度。加权基因共表达网络分析(WGCNA)共检测到 22 个基因模块和 6 个 miRNA 模块,其中 4 个基因模块和 3 个 miRNA 模块与表型相关。功能分析表明,这些模块与不同的分子途径有关,主要涉及 PI3K-Akt 信号通路和 ECM-受体相互作用。与移植相关的棕色模块主要涉及免疫相关途径。最后,使用五个 AUC 值最高的基因建立了 AKI 的诊断和预测模型。该模型在训练集和验证集中的 AUC 值均较高,对 AKI 的预测准确率高达 100%。同样,在 0 小时移植样本中,对 24 小时后 AKI 的预测准确率也达到了 100%。本研究可能为肾移植后 AKI 的诊断和预测提供新的特征,有助于诊断和开发肾移植患者 AKI 的药物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05e7/9004575/08d4b90130c5/aging-14-203962-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验