Suppr超能文献

DHU-Pred:使用多种分类器上的位置和组成变体特征准确预测二氢尿嘧啶位点。

DHU-Pred: accurate prediction of dihydrouridine sites using position and composition variant features on diverse classifiers.

机构信息

Department of Computer Science, School of Systems and Technology, University of Management & Technology, Lahore, Pakistan.

Department of Computer, College of Science and Arts in Ar Rass Qassim University, Ar Rass, Qassim, Saudi Arabia.

出版信息

PeerJ. 2022 Oct 27;10:e14104. doi: 10.7717/peerj.14104. eCollection 2022.

Abstract

BACKGROUND

Dihydrouridine (D) is a modified transfer RNA post-transcriptional modification (PTM) that occurs abundantly in bacteria, eukaryotes, and archaea. The D modification assists in the stability and conformational flexibility of tRNA. The D modification is also responsible for pulmonary carcinogenesis in humans.

OBJECTIVE

For the detection of D sites, mass spectrometry and site-directed mutagenesis have been developed. However, both are labor-intensive and time-consuming methods. The availability of sequence data has provided the opportunity to build computational models for enhancing the identification of D sites. Based on the sequence data, the DHU-Pred model was proposed in this study to find possible D sites.

METHODOLOGY

The model was built by employing comprehensive machine learning and feature extraction approaches. It was then validated using in-demand evaluation metrics and rigorous experimentation and testing approaches.

RESULTS

The DHU-Pred revealed an accuracy score of 96.9%, which was considerably higher compared to the existing D site predictors.

AVAILABILITY AND IMPLEMENTATION

A user-friendly web server for the proposed model was also developed and is freely available for the researchers.

摘要

背景

二氢尿嘧啶 (D) 是一种在细菌、真核生物和古菌中大量存在的 tRNA 转录后修饰 (PTM)。D 修饰有助于 tRNA 的稳定性和构象灵活性。D 修饰还与人类的肺癌发生有关。

目的

为了检测 D 位点,已经开发了质谱和定点突变技术。然而,这两种方法都既繁琐又耗时。序列数据的可用性为构建用于增强 D 位点鉴定的计算模型提供了机会。基于序列数据,本研究提出了 DHU-Pred 模型来寻找可能的 D 位点。

方法

该模型通过采用全面的机器学习和特征提取方法构建。然后,使用需求评估指标以及严格的实验和测试方法对其进行验证。

结果

DHU-Pred 模型的准确率达到了 96.9%,与现有的 D 位点预测器相比有了显著提高。

可用性和实现

还开发了一个易于使用的针对该模型的 Web 服务器,并免费提供给研究人员使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9641/9618264/ae8117a10a3b/peerj-10-14104-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验