Suppr超能文献

iSulfoTyr-PseAAC:通过结合统计矩、周氏五步法则和伪组分来识别酪氨酸硫酸化位点

iSulfoTyr-PseAAC: Identify Tyrosine Sulfation Sites by Incorporating Statistical Moments Chou's 5-steps Rule and Pseudo Components.

作者信息

Barukab Omar, Khan Yaser Daanial, Khan Sher Afzal, Chou Kuo-Chen

出版信息

Curr Genomics. 2019 May;20(4):306-320. doi: 10.2174/1389202920666190819091609.

Abstract

BACKGROUND

The amino acid residues, in protein, undergo post-translation modification (PTM) during protein synthesis, a process of chemical and physical change in an amino acid that in turn alters behavioral properties of proteins. Tyrosine sulfation is a ubiquitous posttranslational modification which is known to be associated with regulation of various biological functions and pathological pro-cesses. Thus its identification is necessary to understand its mechanism. Experimental determination through site-directed mutagenesis and high throughput mass spectrometry is a costly and time taking process, thus, the reliable computational model is required for identification of sulfotyrosine sites.

METHODOLOGY

In this paper, we present a computational model for the prediction of the sulfotyrosine sites named iSulfoTyr-PseAAC in which feature vectors are constructed using statistical moments of protein amino acid sequences and various position/composition relative features. These features are in-corporated into PseAAC. The model is validated by jackknife, cross-validation, self-consistency and in-dependent testing.

RESULTS

Accuracy determined through validation was 93.93% for jackknife test, 95.16% for cross-validation, 94.3% for self-consistency and 94.3% for independent testing.

CONCLUSION

The proposed model has better performance as compared to the existing predictors, how-ever, the accuracy can be improved further, in future, due to increasing number of sulfotyrosine sites in proteins.

摘要

背景

蛋白质中的氨基酸残基在蛋白质合成过程中会发生翻译后修饰(PTM),这是一个氨基酸发生化学和物理变化的过程,进而改变蛋白质的行为特性。酪氨酸硫酸化是一种普遍存在的翻译后修饰,已知与多种生物学功能和病理过程的调节有关。因此,识别它对于理解其机制是必要的。通过定点诱变和高通量质谱进行实验测定是一个昂贵且耗时的过程,因此,需要可靠的计算模型来识别硫酸化酪氨酸位点。

方法

在本文中,我们提出了一种用于预测硫酸化酪氨酸位点的计算模型,名为iSulfoTyr-PseAAC,其中特征向量是使用蛋白质氨基酸序列的统计矩和各种位置/组成相对特征构建的。这些特征被纳入伪氨基酸组成(PseAAC)中。该模型通过留一法、交叉验证、自一致性和独立测试进行验证。

结果

通过验证确定的留一法测试准确率为93.93%,交叉验证为95.16%,自一致性为94.3%,独立测试为94.3%。

结论

与现有的预测器相比,所提出的模型具有更好的性能,然而,由于蛋白质中硫酸化酪氨酸位点数量的增加,未来准确率可以进一步提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4181/6983959/4affad6c6893/CG-20-306_F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验