Suppr超能文献

用于临床和远程健康应用的可解释人工智能:关于表格数据和时间序列数据的综述

Explainable AI for clinical and remote health applications: a survey on tabular and time series data.

作者信息

Di Martino Flavio, Delmastro Franca

机构信息

Institute for Informatics and Telematics (IIT), National Research Council of Italy (CNR), Via Moruzzi 1, Pisa, 56100 Italy.

出版信息

Artif Intell Rev. 2023;56(6):5261-5315. doi: 10.1007/s10462-022-10304-3. Epub 2022 Oct 26.

Abstract

Nowadays Artificial Intelligence (AI) has become a fundamental component of healthcare applications, both clinical and remote, but the best performing AI systems are often too complex to be self-explaining. Explainable AI (XAI) techniques are defined to unveil the reasoning behind the system's predictions and decisions, and they become even more critical when dealing with sensitive and personal health data. It is worth noting that XAI has not gathered the same attention across different research areas and data types, especially in healthcare. In particular, many clinical and remote health applications are based on tabular and time series data, respectively, and XAI is not commonly analysed on these data types, while computer vision and Natural Language Processing (NLP) are the reference applications. To provide an overview of XAI methods that are most suitable for tabular and time series data in the healthcare domain, this paper provides a review of the literature in the last 5 years, illustrating the type of generated explanations and the efforts provided to evaluate their relevance and quality. Specifically, we identify clinical validation, consistency assessment, objective and standardised quality evaluation, and human-centered quality assessment as key features to ensure effective explanations for the end users. Finally, we highlight the main research challenges in the field as well as the limitations of existing XAI methods.

摘要

如今,人工智能(AI)已成为临床和远程医疗应用的基本组成部分,但性能最佳的人工智能系统往往过于复杂,难以自我解释。可解释人工智能(XAI)技术旨在揭示系统预测和决策背后的推理过程,在处理敏感和个人健康数据时,这些技术变得尤为关键。值得注意的是,XAI在不同研究领域和数据类型中并未受到同等关注,尤其是在医疗保健领域。具体而言,许多临床和远程健康应用分别基于表格数据和时间序列数据,而XAI通常并未针对这些数据类型进行分析,计算机视觉和自然语言处理(NLP)才是参考应用。为了概述最适合医疗保健领域表格数据和时间序列数据的XAI方法,本文对过去5年的文献进行了综述,阐述了所生成解释的类型以及为评估其相关性和质量所做的努力。具体而言,我们将临床验证、一致性评估、客观和标准化质量评估以及以用户为中心的质量评估确定为确保为最终用户提供有效解释的关键特征。最后,我们强调了该领域的主要研究挑战以及现有XAI方法的局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc32/9607788/7413f960f5b0/10462_2022_10304_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验