Suppr超能文献

一种基于混合可解释联邦的视觉Transformer框架,用于通过风险因素预测乳腺癌。

A hybrid explainable federated-based vision transformer framework for breast cancer prediction via risk factors.

作者信息

Al-Hejri Aymen M, Sable Archana Harsing, Al-Tam Riyadh M, Al-Antari Mugahed A, Alshamrani Sultan S, Alshmrany Kaled M, Alatebi Wedad

机构信息

School of Computational Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, 431606, India.

Faculty of Administrative and Computer Sciences, University of Albaydha, Albaydha, Yemen.

出版信息

Sci Rep. 2025 May 27;15(1):18453. doi: 10.1038/s41598-025-96527-0.

Abstract

Breast cancer remains a leading cause of mortality in women, underscoring the need for timely and accurate diagnosis. This paper addresses this challenge by introducing a comprehensive explainable federated learning framework for breast cancer prediction. We evaluate three deep learning approaches in both centralized and federated scenario settings: (1) individual artificial intelligence (AI) models, (2) high-level feature space ensemble models, and (3) a hybrid model combining global Vision Transformer (ViT) and local convolutional neural network (CNN) features. These models are assessed on binary, multi-class, and Breast Imaging Reporting and Data System (BI-RADS) classification tasks using a unique dataset encompassing real-world risk factors. In the federated scenario, we employ three clients with the same approaches as the centralized setting, aggregating their predictions using an AI global model. Explainable AI (XAI) technique is incorporated to enhance AI models' transparency. Our federated learning approach demonstrates superior performance, achieving accuracies of 98.65%, 97.30%, and 95.59% for binary, multi-class, and BI-RADS tasks, respectively. The proposed model, evaluated with a 95% Confidence Interval (CI) and Areas Under Curve (AUC) curves, registers top classifiers with an AUC of 0.970 [0.917-1]. Local Interpretable Model-Agnostic Explanations (LIME) XAI-based federated learning framework offers a promising solution for privacy-preserving and accurate breast cancer prediction in both research and clinical practice.

摘要

乳腺癌仍然是女性死亡的主要原因,这凸显了及时准确诊断的必要性。本文通过引入一个用于乳腺癌预测的全面可解释联邦学习框架来应对这一挑战。我们在集中式和联邦式场景设置中评估了三种深度学习方法:(1)个体人工智能(AI)模型,(2)高级特征空间集成模型,以及(3)一种结合全局视觉Transformer(ViT)和局部卷积神经网络(CNN)特征的混合模型。这些模型基于一个包含现实世界风险因素的独特数据集,在二元、多类别以及乳腺影像报告和数据系统(BI-RADS)分类任务上进行评估。在联邦式场景中,我们使用三个客户端,采用与集中式设置相同的方法,通过一个AI全局模型聚合它们的预测结果。我们还纳入了可解释人工智能(XAI)技术以提高AI模型的透明度。我们的联邦学习方法表现出色,在二元、多类别和BI-RADS任务中的准确率分别达到了98.65%、97.30 %和95.59%。所提出的模型通过95%置信区间(CI)和曲线下面积(AUC)曲线进行评估,以0.970 [0.917 - 1]的AUC位列顶级分类器。基于局部可解释模型无关解释(LIME)的XAI联邦学习框架为研究和临床实践中保护隐私且准确的乳腺癌预测提供了一个有前景的解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验